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I. Introduction
Chemical sensor arrays have come to have an

important role in the analysis of volatile analytes.
Such arrays gather data which have broad, overlap-
ping sensitivity profiles, which require substantial
data analysis, often involving pattern recognition

methods to solve the problems being addressed. The
present review is concerned with computational
methods that have been used for analysis of the
chemical sensor array data that is generated when
these devices are exposed to volatile analytes. We
have done electronic literature searches using rel-
evant keywords and followed the trail of references
to relevant papers. In addition, a number of primary
journals (e.g., Analytical Chemistry, Analytica Chim-
ica Acta, Sensors and Actuators, Talanta) have been
scanned thoroughly for chemical sensor array papers
and for leading references. We have focused on
application papers for the time period 1994-1999;
some work outside this time period has been included
where it was essential to provide background for the
data analysis techniques. Altogether, we have con-
sidered hundreds of papers and in coming to the
collection cited we have left out only those publica-
tions which report routine work, are repetitious, are
of little general impact, or provide no explanation of
the computational methods used. The area of chemi-
cal sensor array applications has a substantial num-
ber of papers in which commercially available sensors
and/or commercially available instrumentation is
used to analyze volatile materials or headspaces
without advancing the science of the sensor array
computational analysis.

A number of excellent reviews covering differing
aspects of chemical sensor arrays and related work
with electronic noses have been published.1-5 A
recent review of chemical sensors3 contained 921
references selected from the literature for the four-
year period 1994-1998. A recent edited book6 pre-
sents a detailed overview of biosensors and artificial
noses by a number of authors. A very recent book4

provides an excellent overview of the sensor technol-
ogy, data analysis, and selected applications of
electronic noses.

The importance of the chemical sensor array field
is demonstrated by the existence of numerous orga-
nizations and symposia devoted to the area. Two
Gordon Research Conferencess“Chemical Sensors
and Interfacial Design” and “Bioanalytical Sensors”s
meet regularly. The 6th World Congress on Biosen-
sors meets in May 2000. The 8th International
Conference on Chemical Sensors meets in July 2000.
The Electrochemical Society has had a Sensors
Division since 1988.

The review is organized as follows. First, we review
sensor types with the aim of providing an overview
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in preparation for our discussions of computational
methods and their applications. Among the compu-
tational methods, we focus first on preprocessing and
normalization, which are the first methods ordinarily
applied to raw sensor array data. We then systemati-
cally describe the major data analysis approaches
used with chemical sensor arrays. For each method
we present the basis of the approach, its suitability,
applications that have appeared, and critiques of the
applications. Linear discriminant analysis, principal
components analysis, principal components regres-
sion, partial least squares, and several cluster analy-
sis methods are covered. We then describe variations
of computational neural networks that have been
used with chemical sensor array data. We start with
feed-forward neural networks, followed by their ap-

plications, and then describe self-organizing maps,
learning vector quantization, adaptive resonance
theory maps, and some additional approaches. The
applications are accompanied by critiques comparing
the application to the cautionary comments that
preceded the discussion of each method. Finally, we
conclude with some general comments meant to
summarize the review.

As we introduce the methods used for analysis of
chemical sensor array data, we provide some guide-
lines as to the applicability of each method and, in
addition, cautionary comments on potential pitfalls.
To analyze data from a chemical sensor array, some
characteristics of the data are known in advance,
such as the number of observations and the number
of variables per observation. The analysis methods
to be used and the ways in which they are used can
be chosen with such knowledge being taken into
account. However, some types of pitfalls or problems
cannot be anticipated but are discovered later as data
are being analyzed. Therefore, it is not possible to
generate a standard procedure for the analysis of
data from chemical sensor arrays. Rather it is neces-
sary to have available a set of software tools for use
where appropriate and to tailor the computational
analysis to the problem at hand.

Sensor experiments, and the computational meth-
ods employed to support the experiments, can be for
qualitative analysis or quantitative analysis. Quali-
tative analysis means seeking the presence or ab-
sence of a certain analyte or the presence of certain
analytes exceeding a predetermined threshold. It can
also refer to determining which or how many sensors
to use. Quantitative analysis means measuring the
concentrations, activities, or partial pressures of
analytes or predicting parameters such as organo-
leptic scores or fermentation time. Applications in
each of these areas are covered in the present review.
In all such cases discussed here, the response pattern
of a chemical sensor array is used in conjunction with
computational methods to solve the analytical prob-
lem. Of the many steps that can form a complete
analysis (sampling, sample transport, sample pre-
treatment, separation of the components, detection,
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data treatment, data interpretation), we focus here
on the computational aspects of the analysis.

II. Sensor Array Types

A number of different physical or chemical phe-
nomena can be exploited to generate cross-reactive
sensor arrays. The basic idea is to create sensing
elements of the array which exhibit distinct but
overlapping broad selectivity profiles for the range
of volatile analytes of interest. The sensor array used
should generate a pattern of responses that are
discernibly different for different samples. Thus, the
individual sensors should respond to a broad range
of compounds and should not be highly specific in
their responses. The responses from the elements in
an array to a specific organic vapor should be as
independent as possible (in the statistical sense) to
maximize the information being gathered for that
compound. Reference 6 provides a table listing gen-
eral guidelines regarding the performance of the
different sensor techniques.

This section briefly describes each of the most
common sensor devices that have been used in cross-
reactive sensor arrays. The categories are metal oxide
semiconductors, metal oxide semiconducting field
effect transistors (MOSFETs), quartz crystal micro-
balance (QCM), surface acoustic wave (SAW), polymer-
coated sensors, and optical sensors. A number of
publications have provided overviews of the available
sensor technologies, and they list these same catego-
ries with varying sequences and emphases.1,3,4,6-9

A. Metal Oxide Semiconductors (MeOX) (MeOx)
Metal oxide semiconductor devices rely on changes

in the conductance which are induced by adsorption
of gases on the surface and by subsequent surface
reactions. The device is made by depositing a thin,
porous film of a metal oxide material onto an electri-
cally heated ceramic pellet and then annealing at
high temperature. These devices have been made
from SnO2, ZnO, In2O3, WO3, Fe2O3, Ga2O3, and TiO2,
typically doped with a small amount of a catalytic
metal such as platinum or palladium. Oxygen ad-
sorbs onto the sensor surface, which removes elec-
trons from the conduction band of the semiconductor
material, which increases its resistance. Then the
interaction of a reducing gas with the surface-
adsorbed oxygen decreases this electron trapping
which leads to characteristic increases in the electri-
cal conductance of the sensor material. Elevated
temperatures (100-600 °C) are used to ensure that
the surface reactions are rapid and to decrease the
chance that chemisorbed water will interfere. As the
operating temperature range is elevated, heaters
must be incorporated into the configuration. A very
widely used device consists of a sintered tin oxide
pellet on a heated ceramic base which also has
electrical connections. Arrays of such simple devices
have been used as cross-reactive sensor arrays. Metal
oxide devices are susceptible to degradation if com-
pounds bind irreversibly to the surface. An advantage
of metal oxide sensors in many applications is their
high sensitivity.

A commercially available device called the Taguchi
gas sensor (TGS) is based on tin oxide sensors. It is
comprised of a thin, porous SnO2 film doped with
precious metals. The doped tin oxide acts as an n-type
semiconductor, and oxygen is chemisorbed onto the
surface. Gas analytes then interact with the surface-
absorbed oxygen, and the conductivity of the tin oxide
film is changed. Typical operating temperatures are
300-400 °C. The temperature and the doping agent
can be varied to alter the response characteristics.
These sensors have been used for many analyses, and
they are available in a variety of configurations for
specific applications.

B. Metal Oxide Semiconducting Field Effect
Transistors (MOSFETs)

A related type of sensor is the metal oxide semi-
conducting field effect transistor (MOSFET) device
which operates at elevated temperatures. The MOS-
FET sensor consists of a doped semiconductor and
an insulator (an oxide) covered with a catalytic metal.
The output signal of the device derives from the
change of potential in the sensor due to electric
polarization when molecules react at the catalytic
surface. These sensors operate at temperatures be-
tween 100 and 200 °C.

C. Quartz Crystal Microbalance (QCM) Devices
Quartz crystal microbalance (QCM) devices mea-

sure the mass of adsorbing molecules. These devices
are known as bulk acoustic wave (BAW) devices and
thickness-shear-mode sensors. The active element is
a piezoelectric crystal with a fundamental resonant
frequency. The basic principle is that the resonant
frequency of a spring decreases when a mass is added
to it

where ∆f is the change in frequency due to the
absorbed mass (Hz), f0 is the fundamental resonant
frequency of the piezoelectric crystal (MHz), ∆m is
the mass of the substrate deposited on the surface
(g), and A is the area of the sensor (cm2). Thus, there
is a predicted linear shift in measured frequency and
mass loading of the device.

A quartz crystal oscillator is coated with a thin film
of chemically selective absorbent material that forms
a sensing membrane. Materials used include thin
polymer films, monolayer films, and surface-attached
molecules. When molecules are absorbed by the
membrane, the resonant frequency decreases due to
the increased mass. The frequency shift can be used
as the output from the device. The response of the
device can be altered by employing different mem-
brane species. A discussion focusing on this aspect
of sensor design can be found in refs 9 and 10.

The time constants for QCM devices have been
reported to be on the order of tens of seconds or longer
but are dependent on film thickness and can be less.
Other characteristics include high sensitivity, linear-
ity of response as a function of analyte concentration,
high reproducibility, high stability over time, small

∆f ) - 2.3 × 106f 0
2(∆m/A)
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in size, room-temperature operation, and low power
consumption. Several commercial devices use QCM
sensors.

D. Surface Acoustic Wave (SAW) Devices

Surface acoustic wave (SAW) devices are fabricated
by forming interdigitated electrodes on a piezoelectric
substrate such as quartz. A thin film coating of a
selective absorbing material is deposited on the
surface. A radio frequency voltage is applied, which
produces a Rayleigh surface acoustic wave. The
absorption of molecules onto the surface increases its
mass which perturbs the wave which changes the
frequency of the wave. The governing equation is the
same as that for the QCM for acoustically thin solid
films. The sensor is usually set up with a paired
reference device, and the difference in frequency shift
is measured. Temperature control is important to
reduce drift. Just as with quartz crystal microbal-
ances, the response of the device can be altered by
employing different membrane species. A discussion
focusing on this aspect of sensor design can be found
in ref 10. Coatings used include polymers, lipids,
Langmuir-Blodgett films, and self-assembled mono-
layers. SAW devices are operated at frequencies of
several hundred megahertz, and they have very small
areas, both of which lead to higher sensitivity and
faster response times for SAW devices compared to
QCM devices.

SAW devices have several additional advantages
as well. They can be mass produced at low cost but
with reproducible characteristics, and they can be
miniaturized by using photolithography methodology
for construction. Limitations include their sensitivity
to humidity, which is shared by many other sensors.

One specific example of the use of a SAW device
can be found in ref 11. This study used 10 SAW
sensors which were coated with 10 different poly-
mers. Relative frequencies were used with the refer-
ence being the frequency in the absence of a vapor.
Patterns were generated from this array of 10 sensors
to identify vapors using principal components analy-
sis and clustering methods.

E. Conducting Polymers−Chemiresistors

Gas sensors based on measurements of the resis-
tance changes in a thin film polymer have been
extensively used. Polypyrrole is the material most
widely used in these devices, and polyaniline has also
been studied. These sensors are made by electropo-
lymerizing a thin polymer film across a narrow
electrode gap. The polymers have a conjugated
π-electron system extending along the polymer back-
bone. Sorption of vapors changes interchain hopping,
main-chain conduction, and counterion electrostatics,
any or all of which can change conductivity. Polymers
based on several classes of monomeric compounds
have been used in these devices: pyrroles, anilines,
thiophenes, indoles, furans. The usual property being
measured is the change in conductivity of the poly-
mer when volatile molecules interact with the poly-
mer. Altering the structure or the functional groups
incorporated into the polymer, and using differing

doping ions, leads to changes in selectivity and
sensitivity. Pyrrole monomers couple in the R position
(adjacent to the N) to form the conjugated backbone.
Changing the substituent on the â position leads to
changes in the polymer characteristics. Changes in
polymer characteristics can also be achieved by
varying the electrochemical polymerization condi-
tions.

Conducting polymer devices can operate at ambient
temperature, simplifying their construction and low-
ering their power consumption. The response times
of conducting polymer devices are on the order of 10
s. The responses are usually reversible at room
temperature. Advantages include small size, opera-
tion at room temperature, and sensitivity to polar
analytes. Limitations include reproducibility of fab-
rication of sensors, sensitivity to humidity, drift of
baseline conductivity over time, lack of reproduc-
ibility of the response, susceptibility to poisoning, and
sensitivity to light. Devices based on conducting
polymers films have been used by AromaScan to
generate a commercial analytical instrument.

An alternative polymer-coated chemiresistor array
device has been developed by Lewis and co-workers
based on a carbon black-organic polymer compos-
ite.12 A conducting material, carbon black, is incor-
porated into various polymers, and then each poly-
mer composite is painted across the foils of an
ordinary ceramic capacitor. When exposed to an
organic vapor, each polymer undergoes swelling. This
moves the conducting particles apart, which increases
the resistance across the capacitor. When the sensors
are exposed to an analyte vapor, it takes on the order
of seconds for the sensor to respond. The signal is
taken as the relative change in the resistance com-
pared to the resistance with an air stream blank
sample. Polymer blends were used in a later study.13

Another paper reported the use of chiral polymer
composites which allowed the determination of the
enantiomers of chiral gaseous samples.14 Cyrano
Sciences has commercialized this approach.

F. Optical Sensors
Optical gas sensors have also been used in artificial

noses. Here, a light source excites either the gas
being sensed or a reporter molecule and the signal
measured is the resulting absorbance, reflectance,
fluorescence, or chemiluminescence.

One example of an optical sensor15 involves the use
of beads of polymer on the end of optical fibers. In
each polymer bead is an immobilized solvatochromic
fluorescent dye. The dye is chosen to be sensitive to
the polarity of its local environment. The dye is
excited with a laser excitation source, and its fluo-
rescent emission is monitored. When the polymer is
exposed to volatile organic compounds, it swells and
changes its polarity, and these changes result in a
wavelength shift in the fluorescent emission. This
wavelength shift is monitored as a function of time.
Arrays of fiber optics with different polymers on each
provide an array of sensors that can sense an analyte
simultaneously. A shortcoming of such optical sensors
is the susceptibility of the imbedded dye to photo-
bleaching.
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III. Commercial Electronic Nose Instruments
Tables showing the variety of commercially avail-

able electronic nose instruments have been pub-
lished.2,4,7,16 Several publications assert16,17 that the
leading commercial instruments are Aromascanner
(AromaScan), e-NOSE (Neotronics Scientific), and
Fox Intelligent Nose (Alpha MOS).

IV. Application Areas
The detection and measurement of chemical com-

pounds in the gas phase is clearly important in most
areas of modern life including industrial process
control, health and safety monitoring, and environ-
mental monitoring. Analytical applications of sensor
arrays were developed before olfactory applications
were investigated; we focus on artificial nose meth-
odology here as a particularly apt application for
cross-reactive sensor arrays. Industries using artifi-
cial nose technology include fragrance, cosmetics,
flavor, food, drink, and brewing where monitoring of
odor or freshness or the detection of taints is impor-
tant. Other areas of application range widely and
include the following: security screening; environ-
mental protection, detection of excess volatiles in the
workplace or housing; monitoring of effluents by
plants; diagnosis of medical conditions through moni-
toring of wound infection or diagnosis of disease from
exhalations; bioprocess monitoring; checking of raw
material such as quality, taints, off-flavors; process
monitoring such as odor quality during processing.

V. Data Preprocessing and Normalization
Data preprocessing can be used to systematically

alter the raw signals from a sensor array in hopes

that the altered signal will provide more useful input
to the mathematical tool selected for data analysis
(e.g., principal components analysis or neural net-
works). Unfortunately, no general guidelines exist to
determine the appropriate data preprocessing tech-
nique given a particular type of sensor array. Often
the appropriate preprocessing technique is not known.
In such cases, it may be beneficial to explore several
preprocessing strategies to determine which is best
suited for a particular sensor array/data analysis
method. A brief summary of some of the available
data preprocessing strategies is presented below,
along with some representative applications employ-
ing a variation of the technique.

Data preprocessing methods can be applied to both
static and dynamic sensor responses.18 Table 1 pro-
vides an overview of some of the available prepro-
cessing techniques. Further discussion on prepro-
cessing techniques can be found in refs 4 and 18-
21. The first entry in Table 1 shows some of the
available relative scaling procedures. The scaling can
be done relative to a reference response or some
aspect of the sample response. Such relative scalings
can be used to try and eliminate the concentration
dependence of the response intensity for each sensor.
Therefore, this approach would be more desirable for
qualitative applications. This preprocessing method
is often encountered with electronic noses recording
static responses.12,22-25

The subtraction technique is simply a background
correction method. To reduce matrix effects, the
response of a blank sample can be recorded and
subtracted from each sample response. Another
straightforward preprocessing method is signal av-
eraging. This technique requires replicate measure-
ments with each sensor. This can be accomplished

Table 1. Description of Some Preprocessing and Normalization Techniquesa

a X is an n × p calibration matrix (n samples, p sensors). Xij denotes the response for the ith sample at the jth sensor, xi is the
1 × p response vector for sample i, and xj contains response for all i samples at sensor j.
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by employing multiple sensors of each sensor type
in an array, or by taking replicate measurements of
each sample. The signal-to-noise ratio of the sample
response can be improved by N1/2, where N is the
number of replicate measurements. Improved signals
can be obtained in this manner.26,27

Linearization techniques seek to take a nonlinear
response and transform it into a linear representa-
tion. This is desirable when linear data analysis
methods are employed. However, it is often difficult
to identify the nature of the nonlinearity of the sensor
response. A general preprocessing method has been
developed to allow data from nonlinear sensor re-
sponses to be analyzed with linear techniques.28

The method of mean-centering simply transforms
the data such that the center of the variables
coincides with the origin. A similar preprocessing
method, autoscaling, involves mean-centering the
data and dividing by the standard deviation of all
sample responses at a particular sensor. Autoscaling
is often used when measured responses are on
different unit scales. The autoscaled data will have
a mean of zero and unit variance for each sensor.
Range scaling transforms all response values to lie
between 0.0 and 1.0. That is, in the transformed
domain, the minimum response at each sensor is at
the origin and the maximum response is at 1.0. For
an example of range scaling, see ref 21.

Some preprocessing methods are designed to handle
dynamic data. For example, a baseline subtraction
method can be used to eliminate signal recorded
when no sample is present.29 This is accomplished
for a response by subtracting the first time point at
a sensor from all the time points recorded at that
sensor. This requires that the first time point of the
response be recorded prior to exposure to sample.
Instead of relying on a single time point, an average
over several time points can be used to determine
the amount to subtract provided all time points used
in the average are recorded prior to exposure to
sample.

A number of applications involve the measurement
of data from sensors over time. This results in a large
number of measurements per sensor. Typically, the
number of data points must be reduced in some way
to make the data matrix a reasonable size for pattern
recognition methods. In the simplest case, the steady-
state response is simply calculated, yielding one value
per sensor. Several more complex methods for dealing
with dynamic data responses have been used in
various applications.

Descriptors may be calculated from the raw
data.30-32 Sutter and co-workers calculated descrip-
tors such as the average responses in six time regions
and the steepest positive and negative slopes. Re-
sponses recorded over time also allow derivative
signals to be calculated.29 Derivative signals can be
useful for determining the rate or direction of change
in a response over time. Other preprocessing tech-
niques which have been used for dynamic data
include wavelet transforms,33 Fourier transforms,33,34

Gram-Schmidt orthogonalization,33 and the autore-
gressive model.35

VI. Methods of Data Analysis

There are many tools available for the analysis of
data from an array of chemical sensors. As detailed
in the previous section, the raw sensor responses are
often preprocessed, and the preprocessed data are
then used in a multivariate analysis technique.
Figure 1 illustrates a means of categorizing some of
the available methods as either statistical techniques
or neural network-based approaches. Further delin-
eations are based on whether the technique is used
for quantification or classification. Additional group-
ings are defined by the data required for the tech-
nique. Those requiring only independent variable
information (i.e., sensor responses) are termed un-
supervised methods, while those that also use de-
pendent variable information (e.g., analyte classes)
are termed supervised methods.

The techniques listed in Figure 1 represent meth-
ods that will be discussed in this review. Often, for a
given array application, the data will be analyzed by
only one of the available methods. In some cases, one
statistical and one neural network-based approach
will be used to compare their effectiveness. Two
recent papers by Shaffer and co-workers36,37 provide
comparisons of several of the available data analysis
methods. One paper compares data analysis methods
on multiple sets of data.37 The second paper demon-
strates how prediction accuracy can be improved
using time-dependent information about the re-
sponses.36

Figure 1. Properties of some of the available methods of
analysis for data from sensor arrays.
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Data preprocessing appears in the center of the
diagram, because this is typically done regardless of
the data analysis method chosen. Principal compo-
nent analysis, shown on the top right of the diagram,
is probably the most frequently used technique.
Following the calculation of principal components,
plots can be made to visually examine the data. The
results of the principal components analysis can also
be used as input to any of the other techniques.

The methods of data analysis depicted in Figure 1
represent a tool box, where the choice of a suitable
method depends on the application. Sometimes there
are several suitable tools to choose among, and then
the choice depends on more specific details of the
application and operator preference. Unsupervised
methods are best for qualitative applications such as
exploring relationships in the data. Supervised meth-
ods are used for quantitative applications, such as
determining which class a particular observation
belongs to.

The choice of an appropriate data analysis method
is highly dependent on the nature of the data and
the particular application. There is no universal
method which will be right in all situations. The steps
in a typical analysis, however, are usually similar
regardless of the method chosen. First, a data set of
sensor array responses for the analytes of interest is
assembled. Second, the data are preprocessed ap-
propriately for the application and the chosen method
of data analysis. Third, the features which are to be
used are chosen. Frequently, the steady-state re-
sponse from each sensor is used as input for pattern
recognition techniques. Other frequently used options
include choosing a subset of sensors to use or doing
a principal components analysis, then using the
components as input for further analysis. Using an
evolutionary algorithm38,39 to select among descrip-
tors31 calculated from the sensor responses is another
option. Fourth, analysis is performed using the
chosen method.

A fifth step which is not always but should always
be performed in classification and quantitation ap-
plications is validation of the models formed with a
training set of data using data not used in creating
the models. Another procedure for model validation
consists of scrambling the dependent variable and
testing the models using the scrambled dependent
variable. If the results are good, this is an indication
that there was a flaw in the data analysis. If the
results are not good, this is further support that the
analysis is valid. Leave-n-out validation is a third
means frequently used to ensure models are not only
applicable to the training set data used to create
them.

The following sections contain descriptions of data
analysis techniques used with sensor array data.
Some cautions and potential pitfalls of the techniques
are discussed. After each method of data analysis has
been described, applications are presented describing
the use of the technique with sensor array data.

A. Linear Discriminant Analysis
Linear discriminant analysis (LDA) can be used to

separate classes of objects or assign new objects to

appropriate classes.40,41 The discriminants are linear
combinations of the measured variables, e.g., sensor
responses. Discriminant functions are calculated with
the objective of maximizing the distance between
classes relative to the variation within classes.

To begin, consider two classes, A and B, containing
nA and nB samples each monitored at p sensors. The
data can be collected in matrices XA (p × nA) and XB
(p × nB). From these data matrices, sample mean
vectors are computed as

where xAi and xBi denote the ith columns of XA and
XB, respectively. From this, sample covariance ma-
trices can be calculated as

Assuming equal covariance matrices for the true
populations represented by XA and XB,40,41 the cova-
riance matrices can be combined as

to form a single estimate of the common covariance
matrix for the sample populations.

With this information, discriminant functions can
be calculated as

where superscript -1 denotes the inverse of Sp. For
the inverse of Sp to exist, we must have (nA + nB -
2) > p. The discriminant functions can be used to
visually examine clustering in the calibration data.
Additionally, a discriminant classifier can be com-
puted and used to assign an unknown sample into
one of the two available classes. The discriminant
classifier is computed as

Using the response for an unknown compound, xo,
the discriminant value for the unknown can be
computed

If yo g m, xo is assigned to class A, and if yo < m, xo
is assigned to class B.

LDA can also be used in cases where more than
two classes are present. For the case of k populations,
compute xj i and Si for i ) 1 to k according to eqs 1
and 2. With this, calculate

xjA )
1

nA
∑
i)1

nA

xAi xjB )
1

nB
∑
i)1

nB

xBi (1)

SA )
1

nA - 1
∑
i)1

nA

(xAi - xjA)(xAi - xjA)T

SB )
1

nB - 1
∑
i)1

nB

(xBi - xjB)(xBi - xjB)T (2)

Sp )
(nA - 1)SA + (nB - 1)SB

(nA + nB - 2)
(3)

y ) (xjA - xjB)TSp
-1x (4)

m ) 1
2

(xjA - xjB)TSp
-1(xjA + xjB) (5)

yo ) (xjA - xjB)TSp
-1xo (6)
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where xj is the average taken over all calibration
samples. The combined covariance matrix can be
computed as

A measure of within groups variation for the
calibration data can be obtained as

Additionally, a measure of variation between groups
for the calibration data can be calculated as

The coefficients for the discriminant functions can
be obtained by calculating the eigenvectors of W-1B
and scaling them such that ej

TSpej ) 1, where ej
denotes the jth eigenvector.40 That is, for the jth
discriminant function, the discriminant values for a
calibration sample, xi, can be computed as ej

Txi.
Assuming p > (k - 1), then k - 1 discriminant

functions are available. Typically, only s of these
discriminant functions are used, where s e (k - 1).
For s e 3, the discriminant functions can be used for
graphical display of the calibration data. A classifica-
tion rule can be derived to assign an unknown sample
to one of the k available classes. Assign xo to
population l if, for all l * i

That is, find the center of the class closest to the
unknown sample in the space defined by s discrimi-
nant functions and assign the unknown sample to
that class.

LDA is best used in situations when the relation-
ship between array response and sample class is
believed to be linear. Since the discriminant functions
are generated based on the means and covariance
matrices of training samples, it is extremely impor-
tant that the training samples be representative of
the population of samples that may be encountered.
Therefore, it is beneficial to have a relatively large
number of samples from each class in the training
data. Like all supervised methods, LDA may provide
overly optimistic results if only samples used in

generating the discriminants are considered. To avoid
this, it is best to use an external prediction set
(samples not used in generating the discriminants)
to determine model accuracy.

B. Applications of LDA

LDA has been used successfully to formulate
boundaries between components of different classes
based on responses from sensor arrays. An array of
16 sensors was used with LDA to classify three
perfume samples at two injection concentrations (six
classes).42 Predictive ability was verified using a
leave-one-out approach and by randomly selecting
33% of the data to be held out of the training phase.
In all cases, prediction set samples were classified
correctly. Additionally, LDA could be used to classify
samples according to perfume type, disregarding
injection volume.

Maricou and co-workers analyzed a large set of 12
test analytes with an array of 12 MOS sensors.23 Two
discriminant functions were used to cluster the
samples into three groups of functionally similar
compounds. The number of samples in each class is
relatively small (5-7). When all 63 samples were
used to generate discriminants, only one misclassi-
fication resulted. To verify prediction accuracy, 34
samples were used to generate discriminants and 29
were held out of training. A classification rate of 93%
correct was obtained for the 29 external prediction
set samples, demonstrating the ability of the model
to generalize.

Doleman and co-workers used an array of 14
carbon black-polymer composites as sensors.43 With
the array, 19 volatile organic compounds were ana-
lyzed. LDA was used to maximize a resolution
measure for pairs of analytes. Performance of the
carbon black-polymer sensors was compared to that
of arrays of tin oxide sensors and conducting polymer
sensors. The carbon black-polymer composite array
was shown to produce superior pairwise resolution
values in all cases. Array performance decreased
when signals were normalized to remove concentra-
tion effects. No data were collected after determina-
tion of the discriminants to verify that the pairwise
resolution would not decrease.

An array of seven piezoelectric quartz crystals was
used to monitor the smoke generated from four
burning materials: paper, wood, plastic, and grain.44

LDA was used to generate discriminants to classify
samples based on sensor responses. For the 52
samples used to calculate the discriminants, only one
was misclassified. This work provides a good example
of using external prediction set samples to verify
predictive ability of calculated discriminants. Of 12
samples in the external prediction set, only one was
misclassified.

In a flavor analysis application, an array of 24
conducting polymer sensors was used to analyze
three spiked flavor samples and a control sample.45

LDA allowed over 80% of the samples to be classified
correctly. However, all samples were used in gener-
ating the discriminant functions so true predictive
ability may be over-estimated.

xj )

∑
i)1

k

nixj i

∑
i)1

k

ni

(7)

Sp )

∑
i)1

k

[(ni - 1)Si]

[∑
i)1

k

ni] - k

(8)

W ) [(∑
i)1

k

ni) - k]Sp (9)

B ) ∑
i)1

k

(xj i - xj)(xj i - xj)T (10)

∑
j)1

s

[ej
T(xo - xj l)]

2 e ∑
j)1

s

[ej
T(xo - xj i)]

2 (11)

2656 Chemical Reviews, 2000, Vol. 100, No. 7 Jurs et al.



The stage at which tomatoes are harvested can
influence their taste. Tomatoes that are not fully ripe
are often exposed to ethylene gas after harvest. Maul
and co-workers used an array of 12 polymer sensors
to monitor aroma profiles from tomatoes exposed to
varying amounts of ethylene.46 Two discriminant
functions were used to classify tomatoes according
to the number of days they had been exposed to
ethylene (1, 3, or 5 days). In the same study, similar
analyses were carried out using tomato homogenates.
Although additional samples were not used to verify
the predictive ability of the discriminants, GC profiles
confirmed that the volatile components produced by
the tomatoes changed according to the number of
days of ethylene exposure.

Sensor arrays have been used together with LDA
for the measurement of boar taint.47,48 An array of
five MOS sensors was used to measure responses for
back fat samples from male pigs. LDA was used to
classify the samples into one of two classes. Seven-
teen of 19 samples in an external prediction set were
correctly classified with the developed discriminants.
Anner-Frempong and co-workers used LDA to group
samples into three classes according to concentration
of androstenone and skatole.48 The array of conduct-
ing polymer sensors was only able to classify 53% of
the prediction set samples correctly. However, as
pointed out by the authors, the concentrations of
androstenone and skatole are not necessarily a direct
indicator of taint status. Therefore, the same samples
were labeled as normal, abnormal, or doubtful ac-
cording to taint status as determined by sensory
measurements.48 Using a set of calibration samples,
discriminant functions were developed that correctly
classified 84% of the prediction set samples. The main
confusion was the classification of normal samples
as abnormal. The two applications involving clas-
sification of boar taint demonstrate effective use of
an external prediction set to validate a model.

Keshri and co-workers used a Bloodhound (Blood-
hound Sensors Ltd., Leeds, U.K.) electronic nose
consisting of an array of 14 polymer sensors to
monitor five types of fungi and a control group.49

Using two discriminant functions, the fungi could be
separated from the control group and from each
other. In a similar study, an array of 12 polypyrrole
conducting polymer sensors was used to monitor
bioprocesses.50 Different lots of growth media, some
containing ‘good’ casein hydrolysate and some ‘bad’,
were examined. Two discriminant functions were
able to separate the ‘good’ and ‘bad’ lots. Samples not
used in model formation were correctly classified
using the developed discriminants, providing a good
example of model verification with LDA. The same
array was used to examine cultures of M. carbonacea.
With three discriminant functions, uncontaminated
batches could be separated from contaminated batches
and the contaminated batches could be grouped
according to the contaminating agent. Additionally,
the growth phase of uncontaminated cultures could
be monitored with LDA.

Fenner and co-workers did several studies with an
array of 12 conducting polypyrrole sensors to analyze
wastewater from sewage treatment plants.26,27,51,52

LDA was used on data from the array to differentiate

samples from three treatment plants.26,52 Although
clusters were present, there was a significant amount
of overlap. The same array was used to classify
samples from a particular treatment plant as raw
wastewater, settled wastewater, or final effluent.
Again, overlapping clusters were generated. Further
analysis revealed that seasonal changes in the samples
may have introduced variation in the data resulting
in the overlapping of clusters.26,52 The sensor array
responses were also compared to data from sensory
panels.27,51 In some instances, the sensor array was
able to produce results similar to those obtained by
sensory panels. This series of papers provides a nice
example of how LDA can be used to gain insight into
the relationships in samples and how this informa-
tion can be used to guide further study.

C. Principal Component Analysis
Sensor arrays can be used to generate a great deal

of data in a very short time. A significant challenge
exists in finding ways to extract information useful
in solving the problem at hand from the data.
Graphical analysis of the raw data is often not
possible since the number of samples and sensors is
typically greater than three. Therefore, methods
reducing the data to dimensions that can be accom-
modated graphically are often used. Visual examina-
tion of sensor array data in reduced dimensions can
provide useful information about both samples and
sensors.

Principal component analysis (PCA) provides one
efficient approach for reducing the dimensionality of
a data set. Often two or three principal components
provide an adequate representation of the data,
which is convenient for graphical output. Typically,
the calibration data is collected in a matrix, X, with
m samples as rows and n sensors as columns. Before
PCA, the data matrix X is often preprocessed accord-
ing to one of the methods discussed in the data
preprocessing section. For the discussion that follows,
it will be assumed that the data in X have been
preprocessed as desired and that the number of
samples in X is greater than the number of sensors,
i.e., m > n.

The underlying premise in PCA is that the raw
data in X can be decomposed into eigenvectors and
associated eigenvalues.53 Of the several methods
available to decompose X, one of the most common
is through singular value decomposition (SVD).53-55

This method is often preferred because SVD provides
the most stable alternative under the widest range
of conditions.53

Performing an SVD on X produces

where U is an m × n orthonormal matrix, Σ is an n

X ) UΣVT

) (u1, u2, ..., un)[σ11 0 . . . 0
0 σ22 . . . 0
. . . .
. . .
. . . .
0 0 . . . σnn

]
(v1, v2, ..., vn)T (12)
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× n matrix with singular values (σii) on the diagonal
and zeros off diagonal, and V is an n × n orthonormal
matrix. The values σii are nonnegative numbers,
which are listed such that σ11 g σ22 g ... g σnn. The
squares of the singular values are equal to the
eigenvalues of X, i.e., σii

2 ) λi, where λi denotes the
ith eigenvalue of XXT and XTX. The columns u1...un
of U denote eigenvectors of XXT associated with
eigenvalues (σ11)2...(σnn)2. The columns v1...vn of V
represent eigenvectors of XTX associated with eigen-
values (σ11)2...(σnn)2. The eigenvectors forming U and
V are termed principal components. Frequently, if
SVD is not employed, the decomposition of X will
produce only two matrices, U and H. In this case,
the columns h1...hn of H are equal to the columns
v1...vn of V scaled by the singular values σ11...σnn, i.e.,
hi ) σiivi. In practice, the columns of U and H are
usually of interest.

The amount of variance described by each eigen-
vector is determined by the magnitude of the associ-
ated eigenvalues

where vari denotes the percent variance contributed
by the ith eigenvalue. Since eigenvalues are sorted
in descending order, the greatest amount of data
variance will be described by the first PC. The second
PC will describe the greatest amount of data variance
in a direction orthogonal to the first PC. If sensor
responses are collinear, which is often true for the
arrays discussed in this paper, the first two PCs often
account for 80% or more of the data variance,
indicating that the data variance can be well de-
scribed in only two dimensions. However, this does
not imply that PCA will provide class separation. If
sensors behave in a nonlinear or nonadditive fashion,
class separation may not be possible using PCA.
Therefore, it is best to use PCA when the sensors in
an array are thought to behave linearly.

Once the decomposition of X has been completed,
the columns of U, termed scores, can be used to
project the raw data into a lower dimensional space
for comparison of samples. For example, plotting u1
versus u2 allows the samples comprising X to be
compared in the two dimensions accounting for the
greatest amount of variance in the data. Such plots
are termed score plots. Examination of these plots
reveals any clustering of samples that may be present
in the principal components space examined. Larger
numbers of PCs can be included in the dimensionality
reduction, but useful graphical output is only avail-
able for up to three PCs.

Figure 2 shows an example of a plot using two PCs.
The data used to generate the figure are from
unpublished work56 using three sensor responses.
Each sensor response is the signal-averaged response
of 20 individual sensors, each comprised of a surface-
functionalized microsphere. Microspheres are ex-
posed to a solvatochromic dye, which provides the
fluorescent signal. Time-dependent fluorescent in-

tensity changes were recorded over 45 time points.
For each sensor, nine descriptors were calculated as
the average response over successive five time point
intervals, for a total of 27 descriptors for each sample.
Responses were recorded eight times each for five
analytes, for a total of 40 responses. Of the five
analytes, three were types of coffee and two were
types of roses. As Figure 2 illustrates, two PCs were
adequate to separate the coffee and roses. This same
plot could be used to attempt to classify coffee
samples into one of the three types, but this clas-
sification would be less certain since some overlap
does exist among the coffee samples. Clearly, the two
rose types are too similar to be differentiated with
this analysis.

Loading plots, obtained by plotting columns of H
relative to one another, can be used to evaluate
sensors. Each PC can be examined to determine
which sensors contribute significantly to that PC. A
high loading value indicates that the PC is aligned
in a direction close to the original sensor response.
Selection of important sensors (those contributing
highly to the data variance) can be accomplished by
examination of loading plots. Additionally, the rela-
tion of the sensors to one another can be explored.
Loading plots can be used to determine which sensors
are providing unique information and which sensors
are providing similar information.

As shown in Figure 1, PCA is an unsupervised
method of classification. PCA is generally applied to
data with high linear dependence among the inde-
pendent variables. Near-infrared spectroscopic data
are a good example of this. Care should be taken
when examining PC plots. The PCs describe data
variation and may or may not provide class separa-
tion. It is best to apply PCA in situations where
sensor response is thought to behave linearly relative
to sample concentration. The popularity of PCA is
related to the ease with which it can be implemented.
Two- and three-dimensional plots can be examined
to determine if clusters are present. However, the
graphical nature of the technique results in some

vari )
σii

2

∑
k)1

n

σkk
2

(13)

Figure 2. Plot of the first two principal components
illustrating the separation between samples of coffee and
roses, and the partial separation of the three types of coffee
present. Note that the first two principal components
account for 66.1% of the data variance.
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degree of subjectivity in interpreting results. Ad-
ditionally, PCA is simply applied to the data in X,
and PC plots are generated to see if any clustering
is present. Samples that are not part of X could then
be projected onto the PC plots to see if they fall in
appropriate clusters, but this verification is typically
not done.

D. Applications of PCA
Examination of score plots is frequently used to

reveal clustering of samples. The first two PCs are
often employed, since they capture the most data
variance, and therefore theoretically best describe the
data. Applications of PCA to data from chemical
sensor arrays is used for a variety of things, from a
complete analysis of the data to a guide for other
methods of data analysis. Oftentimes, work with
sensor arrays, especially electronic noses, requires
only differentiation of patterns, e.g., coffee versus
roses. It is not necessary to identify components in a
sample, which may be important in other areas such
as environmental monitoring. Some of the many
applications involving PCA applied to sensor array
data are presented below.

To evaluate sensor array performance, volatile
organic compounds are often selected as test ana-
lytes. Freund and Lewis used an array of 14 conduct-
ing polymer sensors to analyze eight such test
analytes.57 Responses from single sensors were first
examined, but no single sensor could distinguish all
eight analytes. However, application of PCA to data
from all 14 sensors resulted in separation of all
analytes using information from the first four PCs
in various three-dimensional plots. A similar experi-
ment was conducted with an array of 17 carbon
black-polymer resistors as sensors.12 In this study,
nine organic test analytes were used. Although some
overlap was present using the first three PCs,
complete separation could be achieved using PCs 3,
4, and 5. The same array was also used to examine
the responses of binary mixtures of methanol and
ethanol. For a given sample flow rate, a linear
behavior was seen in the plot of the first two PCs as
samples varied in composition from pure methanol
to pure ethanol. The linear behavior of the sensors
demonstrates that PCA was an appropriate choice
of analysis method. This finding suggests that not
only can the components of mixtures be identified
using PCA, but also that the mole fraction of each
component in the binary mixture can be determined.

Kraus and Gauglitz used an array of six sensors
whose responses were measured using reflectometric
interference spectroscopy.58 Responses for three test
analytes, as well as binary mixtures of the analytes,
were recorded. A detailed analysis of the PCs is
presented to demonstrate which analytes and sensors
influence which PCs. This provides a good example
of how analysis of PCs can be used to identify
particular sensors that are responsible for the sepa-
ration of particular analytes. Additionally, clusters
were mathematically defined based on PCs to sepa-
rate the test samples into appropriate groups. Once
the clusters had been defined, responses of validation
samples were recorded with the array. The location

of these samples relative to the defined clusters
allowed classification of the validation data.

Sensor arrays are often employed to monitor bev-
erages. For example, headspace samples of drink
mixes allowed differentiation of genuine and faulty
batches.8 Nanto and co-workers were successful in
separating beverages based on responses obtained
with an array of four quartz resonators.59 Targeted
problems included samples with varying amounts of
ethanol and samples with different types of alcohols.
In both cases, complete separation was achieved with
two PCs. When an array of nonspecific sensors was
utilized in beer flavor analysis, the within classes
variation was large relative to the between class
variation and PCA was unsuccessful in separating
the flavors.45 Di Natale and co-workers used an array
of five MOS sensors to record responses for samples
of wine.60 Five vintages of wine were examined at
three concentrations each. PCA was not able to
separate the samples by vintage. When responses
from one sensor were removed and PCA was per-
formed on the data from the remaining four sensors,
better separation of the wines was achieved. This
demonstrates that PCA can be adversely affected by
information that contributes to data variance but
does not contribute information useful in differenti-
ating samples.

In food analysis, 18 MOS sensors were used to
record responses from the headspace of cheese
samples.61 Of six varieties of cheese, only two were
found to overlap in a PC plot. Cheese age was also
analyzed in this study to determine during what time
the aroma of the cheese most significantly changed
during the aging process. A discrimination index is
also given for each PC analysis, but a definition of
discrimination index is not presented making inter-
pretation of the results difficult. In a similar way,
the storage time of fish samples was monitored.62 An
array of eight amperometric sensors was used to
obtain responses from fish samples over a period of
days. A plot of the first two PCs described storage
time coherently with a minor amount of disorder.
Similarly, storage time for codfish was monitored
with an array of eight quartz microbalances.63 Samples
at low storage time (1-3 days) formed distinct
clusters using two PCs; however, samples that were
older (4-6 days) were more overlapped.

Göpel and co-workers developed a concept they
term modular sensor system (MOSES).64,65 MOSES
involves using sensors that respond by different
transduction principles. All sensors used collectively
form an array from which data is gathered for
pattern recognition with PCA. In one application, an
array composed of eight quartz microbalance sensors
and eight metal oxide sensors was used with PCA to
separate different types of packing material used in
the food industry.65 The same sensor array was also
used to differentiate four types of olive oils. Several
other samples have been categorized using a MOSES
system and PCA, including coffee brands, textile
material, and whiskey brands.64 These studies pro-
vide good examples of how combinations of different
sensor types can be used with PCA to obtain better
separations than those with a single sensor type. It
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is important in such analyses to consider the linear
(or nonlinear) behavior of all sensor types in the
array.

In the analysis of odor from sausage fermentation,
PCA was used to analyze results from a trained
sensory panel and from an array of four TGS and 10
MOSFET sensors.66 Both showed one sausage sample
to be an outlier. Data from the sensor array was
collected at 4, 29, and 52 h in addition to 3 days. The
outlier batch could be identified clearly on the PC plot
after only 4 h of fermentation, indicating its potential
use in process monitoring. In a study of tomato paste
aroma, data from a trained sensory panel was
compared with electronic nose data.67,68 The trained
panel evaluated eight classes of tomato paste and
rated them in nine categories. The electronic nose
used an array of eight quartz microbalances to record
data for the eight classes of tomato paste. PCA was
performed on both the panel results and the nose
results. In neither case were the eight classes sepa-
rable, but there was somewhat less overlap for the
electronic nose data. It should be noted that there
was more array data than sensory panel data for each
of the eight classes of tomato, which may help to
explain the improved clustering in the PCA plot of
the array data.

In a related application, an array of 10 MOSFET,
four TGS, and one IR sensor was used in on-line
monitoring of an ethanol batch cultivation with the
yeast Saccharomyces cerevisiae.69 Responses of all 15
sensors were used to generate plots of scores and
loadings. On the basis of the analysis of these plots,
a reduced set of five sensors was selected for further
evaluation. The score plot for the reduced sensor set
showed a correlation between variation in the PCs
and the stage of the cultivation. Gibson and co-
workers found that PC plots were not adequate to
separate three strains of yeast, control media, and
distilled water.70 Responses were collected with an
array of 16 conducting polymer sensors, but only the
seven sensors showing the highest statistical differ-
ence in responses were considered.

Mandenius and co-workers used an array of 15
sensors (10 MOSFET, four TGS, one IR) to monitor
the manufacturing of baker’s yeast.71 PCA plots
allowed the time course of the cultivation to be
followed. Features such as the ethanol maximum and
carbon dioxide evolution optimum could be identified.
The sensor data was supplemented with other on-
line signals including aeration rate, reactor volume,
and ethanol content. PCA of the augmented data
allowed further analysis of the time course of the
cultivation. This work provides a good example of
how other information about a system can be com-
bined with sensor array data before PCA to improve
results.

Odor analysis plays a large role in the perfume
industry. Human sensory panels are typically relied
upon to differentiate scents. Carrasco and co-workers
employed an array of 18 MOS gas sensors to dif-
ferentiate perfumes.42 Of the three perfume samples
considered, two were of the same type, one of which
had previously been labeled as ‘bad’ by a sensory
panel, and the third sample was a separate perfume

type. Each sample was injected at two volumes,
producing a total of six classes. Two unresponsive
sensors were removed, and PCA was carried out on
the remaining 16 responses. Using three PCs, six
clusters were formed with some overlap between
clusters. A better separation, with virtually no over-
lap among the six clusters, was achieved using LDA.
Additional experiments with PCA involved determin-
ing if samples for each perfume type could be
separated based on injection volume. In all three
cases, two PCs were able to separate the samples
with slight overlap existing in only one case. Ad-
ditionally, PCA showed that the ‘bad’ perfume batch
could not be fully separated from the normal batch
using three PCs.

A hypothesis testing method was devised by Marth
and co-workers to determine if a sample contained
response information from a species not present
during array calibration.72 PCA was performed on an
augmented matrix, consisting of the calibration
responses and the sample response. Using the num-
ber of PCs previously determined to account for
relevant variation in the calibration data, the sources
of known variation were projected out of the aug-
mented matrix. PCA was then performed on the
remainder of the augmented matrix, to determine the
largest eigenvalue. Hypothesis testing consisted of
comparing this value to the largest eigenvalue from
a pure random matrix of the same size as the
augmented matrix. If the values were determined to
be different at some confidence level, the sample
response was labeled as containing species not present
in the calibration samples. This approach represents
a unique use of PCA. Prediction samples can be
classified as represented by or different from the
calibration samples, but no further groupings of
samples can be accomplished.

The perineal odor of cows was monitored with an
array of 12 conducting polymer sensors.73 PC plots
were used to demonstrate that samples could be
grouped as taken on the day of estrus or in the
midluteal phase. Discrimination of eight brands of
glue was accomplished using two PCs from data
taken with an array of four plasticized conducting
polymer sensors.25 A mixed array of 15 sensors,
composed of 10 MOSFET, four TGS, and one CO2
sensor, was used to separate classes of paper.74 This
study found that the separations based on two PCs
were more successful using data from a reduced
sensor array, composed of seven or only four sensors,
compared to data from all 15 sensors. However, the
rationale for selecting subsets of sensors to use is not
clear. Bodenhöfer and co-workers designed a sensor
array to discriminate chiral analytes.75 To accomplish
this, the sensor array was designed with chiral
polymers, enabling differentiation of mixtures of
different enantiomeric ratios of analyte using PC
plots.

Although PCA is a classification tool, it can some-
times be used to obtain some degree of quantitative
information. Hong and co-workers used an array of
four gas sensors to obtain responses to four gases
each at three concentrations.76 PCA revealed that the
analytes clustered according to analyte identity and
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concentration. There was some overlap of samples at
lower concentrations, indicating poor sensitivity in
these regions. Additionally, no mention is made
regarding the usefulness of the sensor array for
separating the four types of gases if the concentra-
tions covered a continuous range rather than three
discrete values. The same array was used to record
responses for six flavor samples (carrot, green onion,
woman’s perfume, man’s perfume, 25% liquor, and
40% liquor). The six flavor samples contained only
slight overlap based on two PCs. Both examples
showed some ability to classify the same analyte
based on a concentration difference. However, nor-
malization of sample responses may remove any
concentration effects from the response, allowing
samples to be grouped according to analyte type,
regardless of concentration.

Loading plots can be examined to evaluate sensor
performance. In one study, the stability of films for
QCM sensors was examined.22 A starting set of
coatings was first used, and PC plots were generated
so the location of the sensors in PC space could be
examined. Films for sensors that were not close
together in the PC plot were considered in generating
mixed films, in an effort to incorporate the useful
properties of both the films into one sensor. In a
similar study, arrays of eight QCM sensors, with
different film coatings, were evaluated.77 For each
array, responses to test analytes were measured.
PCA was used to reduce the data into two dimen-
sions, and the ability of the array to cluster the
samples was examined. An optimal array of coatings
was selected and used to examine a series of chemi-
cally and physically similar alcohols. Although PCA
could be used to separate the alcohols, LDA was
shown to produce much tighter clusters. However, it
is important to remember that LDA is a supervised
method and will often produce tighter clusters in
training data. To better assess the performance of
LDA, samples not used in generating the discrimi-
nants should be examined.

Four organically modified silicate films were used
by Inoue and co-workers to demonstrate that acidic
and basic analytes could be differentiated by conduc-
tance changes in the films due to interaction with
analyte vapor.78 Tetraethoxysilane was used as a
modifier in the silicate films to increase response
diversity. Plots of two PCs showed that the silicate
films were capable of responding to a wide range of
acidic and basic organic molecules.

Barkó and Hlavay used PCA to determine if
sensors were providing unique information.79 An
acceptable array of four piezoelectric sensors was
then used to measure the responses of several test
analytes. The analytes overlapped slightly when
plotted using the first three PCs. The authors discuss
one analyte at a time, providing possibilities for the
degree of separation. They suggest that as the
number of sensory elements in an array increases,
the array can be used to distinguish more analytes.
This could be true, provided that the additional
sensing elements provide new information useful for
separating the analytes of interest.

An array of SAW sensors was used to compare the
responses with and without hydrogen bond acidic
polymers as sensors.80 Plots of the first two PCs
revealed that low-polarity test vapors were well
separated from more polar test vapors with an array
of 11 sensors, four of which were hydrogen bond
acidic polymers. Without these four sensors, the test
analytes could no longer be separated based on
polarity. This provides another good example of how
PCA can be used to determine the array best suited
for a given task.

Roussel and co-workers calculated features based
on sensor array responses and used the features for
further data analysis instead of the actual sensor
responses.29 They recorded time-dependent responses
using an array of five tin oxide sensors. Instead of
using the adsorption maxima for each sensor, 29
features were calculated from the time-dependent
response and the first and second derivatives of the
response. This approach is unique in that both
feature extraction and PCA are used to compress the
data into a lower dimension. Measures of repeat-
ability and discriminant distance were developed.
These measures were used on the extracted features,
as well as on the projections of the extracted features
into PC space. Calculation of repeatability in PC
space showed that a subset of five features would be
best. However, the discriminant distance was best
using all 29 features and PCA. No comparison is
made to calculations of PCA on raw data to more
clearly demonstrate the effectiveness of feature ex-
traction.

PCA can also be used to analyze data collected with
respect to time. For example, Auge and co-workers
used an array of four quartz resonators to collect data
for four test analytes.81 The analytes were presented
to the array in sequence, with data collection at
successive time increments. The data matrix gener-
ated was analyzed with PCA to determine if the
analytes would cluster. Four clusters were observed,
along with scattering points representing carrier gas
and the rising and falling of sensor signals. Addition-
ally, Llobet and co-workers compared clustering
obtained based on steady-state and transient mea-
sures.82 An array of four Taguchi gas sensors was
used to analyze three organic volatiles at varying
concentrations. Two response values, one at steady-
state and one capturing temporal information, were
recorded for each sensor during each sample presen-
tation. Separate PC analyses were performed on the
steady-state and transient data. Superior clustering
was achieved using the temporal information. This
is not surprising since the authors point out that the
temporal measurements were more reproducible than
the steady-state measurements.

Nakamurra and co-workers also developed a method
of extracting temporal information from an array of
six QCM sensor responses.24,35 They described sensor
responses with the autoregressive model, from which
they extracted time constants for the response. The
time constants were used with PCA and provided
better separation of test analytes than the static
measure of saturation mass.35 The method was
refined to accommodate situations in which the gas
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concentration was changing.24 Smoke from different
sources was examined in an effort to determine the
source of the fire based on the smoke. Samples of
burning PVC cables and circuit boards were signifi-
cantly overlapped when PCA was performed on static
responses. Incorporation of time constants allowed
the PVC cables and circuit boards to be differenti-
ated.

In an effort to work toward a method to standardize
electronic noses, Gardner and Bartlett proposed
methods to define instrument range and resolving
power.83 Mathematical expressions were derived to
model response characteristic of several sensor types.
Simulated array responses were used to examine the
affects of random error in the system. PCA was used
to demonstrate how the addition of random error
affects sample clustering. At 5% random concentra-
tion errors, three analytes clustered well using the
first two PCs. When the random concentration error
was increased to 20%, analytes overlapped in plots
of the first two PCs. However, the first and third PCs
produced clusters that were separable, indicating
that the increased random error significantly de-
graded the useful information in the second PC.

E. Principal Component Regression
Principal component regression (PCR) provides a

link between the matrix X of response information
and the matrix C of concentration information.55 The
matrix C is m × s, where s denotes the number of
analytes. The matrices are related by C ) XP, where
P is the n × s matrix of regression coefficients.53-55

The calibration information in C and X can be used
to find an approximation to the regression coef-
ficients. The true regression coefficients cannot be
calculated exactly due to the unavoidable presence
of experimental error. The first step in the computa-
tion of the regression coefficients is the decomposition
of X according to eq 12. The approximation to P,
denoted Pk, can be computed as

The calculation in eq 14 employs all n available
principal components. However, only a subset, k, of
the n available PCs is typically used for the computa-
tion. The k PCs are generally those accounting for
the largest amount of data variance, i.e., the first few
PCs. If too many PCs are used, the model formed will
not only contain the general characteristics of the
data, but also describe details of the calibration data
that are not necessary for generalization and may

degrade predictions for data not used in the calibra-
tion process. Using only k PCs, eq 14 can be rewritten
as

where k indicates the use of a subset of k of the n
available PCs.

After Pkk has been computed, predicted concentra-
tions can be obtained for unknown samples given the
response of the unknown to the n sensors. If y
denotes the 1 × n response of an unknown sample,
the estimate of analyte concentrations can be ob-
tained as cky ) yPkk where cky denotes the 1 × s vector
of predicted concentrations for the s analytes. Thus,
PCR can be used to obtain quantitative estimates for
all species present in known amounts in the calibra-
tion samples.

Since PCR is a linear technique, it will be most
successful when sensor responses are known to be
linear. Like LDA, PCR can produce overly optimistic
results if prediction accuracy is based only on data
used to generate the principal components. This
problem can be somewhat alleviated by use of a
leave-one-out cross-validation procedure with the
training data. However, a better way to verify the
predictive ability of a model is with the use of
external prediction set samples.

F. Applications of PCR
Eklöv and co-workers used PCR to predict the

fermentation time of sausage samples.66 Data were
collected with a 14-sensor array at various times in
the fermentation process. A subset of the data was
used to build a calibration model, with the remainder
held out to validate the model. A PCR model using
two principal components was more successful at
predicting fermentation times than linear regression
with any single sensor. However, the authors point
out that the sensor responses and the changes in
sausage characteristics over time are likely nonlin-
ear. Therefore, PCR may not provide optimal predic-
tions in this case.

In characterizing the storage time of fish samples,
Schweizer-Berberich and co-workers used PCR to
quantify various compounds producing the odors.62

Analyses were performed over a period of days to
monitor how the odor changed, and how the concen-
trations of particular analytes changed in relation to
the odor. Using responses from an array of eight
amperometric sensors for test gas mixtures, they
were able to build models to predict the concentra-
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tions of sulfur- and nitrogen-containing compounds
with reasonable accuracy. This allowed them to
predict the concentrations of the same compounds for
the fish samples. However, predictive accuracy for
other compounds of interest was poor. The poor
predictions seem to be more a lack of sensitivity of
the sensor to the analytes of interest rather than a
failing of PCR.

Bodenhöfer and co-workers demonstrated that sen-
sors coated with chiral polymers could be used to
differentiate chiral analytes with PCA.75 In addition,
they used PCR to form models to predict the enan-
tiomeric composition of mixtures containing R and
S forms of chiral analytes. Separate models were
generated for each chiral analyte. Various array sizes
were investigated to determine how many chiral
sensors were necessary to produce accurate quanti-
fication. PCR was used on data from an 11 sensor
array to predict enantiomeric composition of samples.
External prediction sets were used to verify model
accuracy. Prediction set errors were within 4% of the
actual enantiomeric composition in all cases.

In a recent series of papers, Zellers and co-workers
presented a pattern recognition method they called
extended disjoint PCR (EDPCR).84-87 In short, they
developed principal components models for each
group examined. An unknown could be classified by
determining the goodness of fit for each of the PC
models and assigning the unknown to the group
corresponding to the model of best fit. Quantification
of analyte concentration could be achieved once the
appropriate model was determined. Monte Carlo
experiments were used with EDPCR to evaluate
arrays of four SAW sensors with various coatings.84

Using the optimal coatings, analyte classification was
better than 90%. In another study, temperature and
humidity were varied to see how these parameters
affected SAW sensor responses.85 Additionally, the
same methodology was used to examine the limit of
detection for sensor arrays.86 Monte Carlo experi-
ments showed that the recognition rate for sensor
arrays often falls off sharply near the limit of detec-
tion. Therefore, the authors suggested that a limit
of recognition would be a more meaningful measure
of array performance.

A very recent paper by Park, Groves, and Zellers87

examined the ability of arrays of 2-6 SAW sensors
to differentiate pure analytes and components of
mixtures. The authors again used their EDPCR/
Monte Carlo approach. Arrays of 2-6 sensors were
used to classify 16 vapors in two concentration
ranges, one near the limit of detection and one well
above the limit of detection. Recognition rates were
greater than 95% for arrays ranging from 3 to 6
sensors. The 16 vapors were divided into two groups,
eight relatively nonpolar vapors in one group and
eight relatively polar vapors in the other group.
Recognition rates were similar to those obtained for
all 16 vapors, but the optimal sensors selected (when
considering arrays of less than six sensors) were quite
different for the subsets of eight vapors. Mixtures of
2-6vapors were also examined with this array. The
authors found that adding sensors did not necessarily
improve array performance. Additionally, results

indicated that if all possible combinations of vapors
are considered, analysis of more than four vapors
may be intractable. This paper carefully examines
the number of sensors necessary to accomplish a
given task. Some of the results presented dispute the
idea that large sensor arrays are required for complex
vapor sensing tasks.

G. Partial Least Squares
Partial least squares (PLS) provides information

similar to that available through PCA and PCR. The
calibration matrix, X, is decomposed into two matri-
ces, B and D, such that the vectors b1, b2, ..., bk are
linear combinations of the vectors u1, u2, ..., uk and
the vectors d1, d2, ..., dk are linear combinations of
the vectors v1, v2, ..., vk. Algorithmic details for PLS
can be found in refs 53 and 54. Recently, Lang and
co-workers demonstrated mathematically the differ-
ences between PCR and PLS and described a general
regression algorithm containing PCR and PLS as
special cases.88 In short, PLS utilizes more informa-
tion from the matrix, C, of calibration concentration
values in generating B and D than PCR does in
generating U and V.

The columns of B are frequently termed PLS scores
and can be used to generate plots analogous to the
PC plots produced using the columns of U. PLS
loading plots can be obtained in a similar manner
from the columns of D. Graphical analysis of such
plots provides information similar to the more tra-
ditional PCA plots.

Quantification with PLS models also requires an
estimate of the regression coefficients in P. First, the
calibration matrix, X, is projected using the k latent
variables in B and D:

An estimate of P can then be obtained as

where Xk
+ denotes the Moore-Penrose generalized

inverse of Xk.54 Concentration estimates for unknown
samples can then be obtained as described in the PCR
section.

Since PLS is quite similar to PCA and PCR, similar
precautions should be taken when using PLS. PLS
is a linear technique, but nonlinear variations are
available. An external prediction set should be used
to verify model accuracy, especially when PLS is used
to obtain quantitative estimates.

H. Applications of PLS
PLS has been used to separate and quantitate

analytes of interest based on responses from sensor
array data. Carrasco and co-workers used PLS score
plots to show that data from an array of 18 MOS gas
sensors could be used to separate perfume samples,
where the class of the perfume samples was deter-
mined by the volume of sample headspace used for
injection.42 Although complete separation of the
samples was achieved, LDA and PCA were shown to
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be able to separate samples based on perfume type
as well as injection volume. Results of such an
analysis were not presented using PLS. Niebling and
Müller compared models formed with an array of two
sensors and models formed with an array of eight
sensors.28 The two-factor PLS model formed with
data from the eight-sensor array was superior. This
work provides a clear demonstration of the ability of
PLS to extract relevant information and disregard
redundant information.

Blixt and Borch used an array of 10 MOSFETS,
four TGS, and one IR sensor to monitor vacuum-
packaged beef.89 Responses were collected over sev-
eral months, and they found that only six of the
available sensors were stable over this time period.
PLS models were generated using all six of the
sensors and subsets of the six sensors to predict the
degree of spoilage as determined by a sensory panel.
The most promising model for prediction of spoilage
was based on responses from two MOSFET sensors.
After model formation, data from additional samples
were collected to validate the models. The model
validation provides an excellent demonstration of
how to verify the ability of PLS models to generalize.

Seeman and co-workers used reflectometric inter-
ference spectroscopy with an array of 10 polymer-
coated sensors to examine three test analytes.90 PLS
scores and loadings were examined to see which
sensors were contributing the most information to the
responses for the three analytes. For quantitation,
PLS produced poor results, and a more complex
quadratic PLS model was developed that provided
improved prediction accuracy. Domanský and co-
workers also used nonlinear PLS for quantitation.91

They used an array of four sensors to monitor
hydrogen and ammonia gases. All four sensor re-
sponses were necessary to accurately quantitate
hydrogen, while two sensors were found to be ad-
equate for ammonia. The nonlinear PLS models
formed provided excellent quantitation for both ana-
lytes. Similarly, Dickert and co-workers found that
they could achieve excellent quantitation of structur-
ally related aromatics (e.g., o-xylene and m-xylene)
by performing nonlinear PLS on responses from an
array of four QCMs.92 Relative humidity was sys-
tematically varied to examine its effect on the sensor
responses.

Grate and co-workers used arrays of polymer-
coated acoustic wave vapor sensors to identify un-
known vapors which were not represented in the
calibration phase.93 To accomplish this, models were
generated to predict solvation parameters of a given
vapor based on sensor response and predetermined
parameters of the polymers in the array (e.g., poly-
mer thickness). The calculated solvation parameters
are then compared to a database containing param-
eters for many vapors. This work is unique in that it
provides a potential means to identify an unknown
vapor even if the unknown vapor was not explicitly
represented in the calibration phase.

I. Cluster Analysis
Clustering is the operation of determining which

objects are most similar to one another and grouping

them accordingly. Similarity can be determined in
many ways, one of the most common is by comparing
distances in N-dimensional space. N may represent
the number of sensor responses or the number of
samples, depending upon whether a clustering of
sensors or of analytes is desired, but for the purposes
of this discussion, N is defined to be equal to the
number of sensor responses and the analytes are to
be clustered. Each sample can be represented by an
N-dimensional vector of sensor responses. Many
distance metrics have been reported for use in cluster
analysis,94 but the most commonly used is the Eu-
clidean distance. A general formula for distance is
as follows:

where dij is the distance between two samples, xik is
the first sample, xjk is the second sample, and p is
the number which produces the desired distance
metric. For p ) 2, the distance is the Euclidean
distance. For higher values of p, more weight is given
to smaller distances.

There are several considerations to keep in mind
when working with clustering techniques. The first
is that as is frequently the case for neural network
analyses, cluster analysis typically requires a large
number of training samples. This requirement en-
sures that the samples from each class will fill the
associated N-dimensional space. Second, markedly
different results often occur depending upon the
choice of clustering method.

Cluster analysis has been used both as an explor-
atory and as a pattern recognition technique. Rela-
tionships between analytes and sensors have been
examined. Clustering has frequently been used as a
method for selecting out of a large set of sensors the
optimal sensor array for classifying a particular set
of samples. The performance of sensor arrays for the
purpose of identifying analytes has been evaluated
based upon the utility of the data collected from those
arrays for correctly clustering various analytes.

1. Mapping and Display

Sensor array data can be displayed graphically for
visual inspection to give the user qualitative infor-
mation about the data set. Typically this cannot be
done directly as the data sets are usually greater
than three-dimensional (meaning that there are more
than three sensor responses per sample). The data
can be reduced to two or three dimensions for
graphical display. The method most commonly re-
ported for this purpose in the analysis of data from
sensor arrays is principal components analysis, which
has been described earlier in this paper. Another
technique, nonlinear mapping, also known as Sam-
mon mapping,95,96 is included in the data analysis
package provided with some commercial instru-
ments.97,98

In Sammon mapping, the object is to find a two-
dimensional representation which best preserves the
original relationships between the data points. The
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interpoint distances in N dimensions are calculated
using a distance metric, typically the Euclidean
distance as described above. Then the distances
between the points in two dimensions are given by

where the y’s are the scores calculated from a
principal components analysis, i and j refer to points,
and 1 and 2 refer to the coordinates.

The goal is to change iteratively the y for each point
to minimize the error function, E

The exponent, p, is included to allow weighting of
small or large distances. The effect of different values
of p on the projection obtained is discussed by Bender
and Kowalski.96 The error function must be mini-
mized using a nonlinear minimization method such
as steepest descent.

Two recent studies illustrate the use of this map-
ping approach. A study was performed using a
commercially available instrument with conducting
polymer sensors for the purpose of determining
whether the instrument could distinguish water
vapor from dairy products and slightly varying dairy
products from one another.97 Data from 32 sensors
was taken, and the Euclidean distance between each
vector was calculated. Sammon mapping was used
to project the data points from 32-dimensional space
into two or three dimensions for visual inspection.
Sammon mapping was also used with a commercially
available electronic nose to examine a data set of
vapors from balsamic vinegars.98

In studies involving many analytes in complex data
sets, these graphs may not yield a good separation
of the analyte classes. This is not conclusive proof
that the analytes cannot be distinguished from one
another. In such instances, it may be the case that
there are too few dimensions shown to give a satis-
factory separation.

2. Hierarchical Clustering
Hierarchical clustering is a technique frequently

used in sensor array applications. In hierarchical
clustering, the multivariate distances between all
pairs of points are first calculated. The results of the
clustering depend on the method of clustering and
the similarity measure applied to the data set. The
most commonly used distance metric in sensor array
applications is the Euclidean distance described
above, but there are many alternatives.

Sometimes, rather than using the raw distances,
similarity values, Sij, are calculated as follows

where dij is the distance between points i and j and
dij(max) is the largest distance between any two

samples. Thus, the most distant points in a data set
will have Sij ) 0 and the identical points will have
Sij ) 1.

After distances and similarity values have been
calculated, clustering may be performed using one
of several methods.99 Single linkage computes the
nearness of a point relative to a cluster according to
the distance between the point and the nearest point
in the cluster. The complete linkage method deter-
mines the distance between a cluster and a point
according to the distance between the point and the
furthest point in the cluster. The centroid method
uses the distance between the point and the center
of gravity of points in a cluster. Additionally, the
calculation may be weighted by the number of points
in the cluster.

Any of these clustering methods can be used to
build up a hierarchy of points. Starting with the
points forming the data set, the two most similar
points are joined. Then the most similar third point
is joined, then the fourth, and so on. A hierarchical
arrangement is formed which represents the overall
degree of clustering of the data points.

Good results can also be obtained with divisive
methods. In a divisive method, the set of all objects
is first divided into two clusters. Each cluster is
successively divided until finally all objects are
separated. Each method presents certain computa-
tional advantages.94

Minimal spanning tree (MST) is another method.
The MST is found by connecting a set of data points
such that each forms a node of the tree and the sum
of all the line segments over the data set is a
minimum. Then, clusters are pruned from the tree
on the basis of the length of a line segment in
comparison to other nearby segments.

Following the formation of clusters, a dendogram
may be drawn. A dendrogram is a two-dimensional
plot in which the points are assigned equally spaced
locations arrayed along the foot of the plot and the
vertical axis is related to the degree of similarity of
the points. A vertical line originates from each point
along the foot of the plot, and the line for any
particular point ends when that point has joined a
cluster. This allows a simple, visual examination of
the overall set of clustering relationships within a
data set. Note that clusters are not automatically
formed by this method. They may be assigned ac-
cording to distance or another criterion.

Hierarchical clustering is an unsupervised method.
It is best suited to qualitative investigations of
relationships in data. Hierarchical clustering has
been used in a variety of qualitative applications with
artificial nose data.

An array of 32 conducting polymer sensors was
exposed to polychlorinated phenol vapors, and the
change in electric resistance was measured.100 Eu-
clidean distance and similarity matrices were calcu-
lated from normalized data. Clustering was per-
formed using the complete linkage method to investi-
gate the effect of chemical structure on sensor
response. Hierarchical clustering has been used by
several groups to select a set of sensors out of a larger
set of possible sensors. Holmberg and co-workers
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used a hybrid array of 15 sensors consisting of 10
MOSFET sensors, four Taguchi gas sensors, and one
infrared CO2 sensor to take data from the odors of
five cardboard papers and air.74 They used hierarchi-
cal clustering with a Euclidean distance metric with
average between groups linkage to examine the data.
After several iterations of analysis, they found that
data from four of the original sensors, two MOSFETs
and two TGS, produced a clustering which correctly
classified all 96 samples. No prediction was done,
however, so the result should be considered in terms
of the sensors it selected rather than the classification
results. To screen candidate sensing layers for a
sensor array, Domansky and co-workers deposited 10
thin sensing layers on stainless steel sample elec-
trodes.91 A Kelvin probe was used to measure the
work function, which is a measure of the interaction
of the sensing layer with the analyte. Hydrogen and
ammonia at three concentrations were presented to
the sensing layers. The response time, recovery,
reproducibility, and baseline stability for each sen-
sor’s signal as a function of time was qualitatively
examined. For each sensor and gas combination,
calibration curves were made and the responses
evaluated on the basis of their sensitivity and linear-
ity with the log of concentration.

Using information gathered from these tests about
the linearity, sensitivity, and stability/reproducibility
of each sensing layer to both hydrogen and ammonia,
a hierarchical clustering analysis was performed. The
clustering method chosen was K-means, in which the
centroid average of linked samples replaces those
samples in further calculations. The data were mean-
centered and treated with principal components
analysis. One component was selected. The clustering
analysis resulted in two layers with good linearity
and one with poor linearity, all with high sensitivity
to hydrogen, clustering together. Three layers which
were clustered together and selective for ammonia
also featured one layer with poor linearity, while the
other two exhibited good linearity. The remaining
four layers formed another cluster. These results
were consistent with the qualitative evaluations
made previously.

The relationship between sensors has been exam-
ined using hierarchical clustering. Dickinson and co-
workers fabricated four fiber optic sensors using
varying ratios of two monomers which were then
photopolymerized.101 The data set consisted of the
response at 40 time points of two of each type of
sensor to the presentation of benzene vapor. A
hierarchical cluster analysis using Euclidean dis-
tance showed that the sensors did not cluster as one
would have expected if their responses were simply
linearly related to the relative amounts of the two
different monomers used to fabricate the sensors.

3. K-Nearest Neighbor Classification

The K-nearest neighbor (KNN) technique is simple
yet powerful. An unknown is classified in this method
according to the majority classification of its K
nearest neighbors in a training set in N-dimensional
space. Each of the N dimensions corresponds to a
sensor response or to a sample, depending upon the

desired application. Ties can either be avoided by
limiting K to odd numbers only or by giving greater
weight to closer neighbors. Nearness is determined
using a distance metric.

KNN is algorithmically very simple.102 First the
distance matrix between all pairs of points is com-
puted. To determine the nearest neighbors, either the
upper or lower part of the diagonally symmetric
distance matrix is scanned for the smallest K dis-
tance values. Whichever class an observation’s K
nearest neighbors belong to is taken to be its class.
The algorithm is frequently used with leave-one-out41

cross-validation, in which the class membership is
determined for one member at a time using the
remainder of the data set to examine for nearest
neighbors. The percent error which is a measure of
the predictive ability for the whole data set is then
the number of observations correctly classified (one
at a time) divided by the total number of observa-
tions. Despite its simplicity, KNN classification can
be used very effectively with cross-reactive sensor
array data.

KNN is a supervised method. This means that
knowledge of the dependent variable is used. Param-
eters of interest include the total number of training
samples used, the number of training samples in each
class, and the training method used (leave-one-out
or leave-n-out cross-validation). To evaluate the
performance of a KNN model after it has been
created, validation should be performed. Methods for
validation include using the model to predict the
classes of observations not used in the training and
scrambling the dependent variable and re-doing the
analysis. For the scrambling experiment, the desired
outcome is a low correct classification rate, preferably
near that expected to be attained by random class
assignment.

KNN was used to classify sample responses from
an array of four coated quartz crystals. The data set
was comprised of the lowest and highest frequencies
exhibited during the presentation of each of the seven
organic solvents. The data were normalized to elimi-
nate concentration effects.103 No details were pro-
vided about the training procedure, validation method
(if any), or number of correct vs incorrect classifica-
tions, so it is difficult to evaluate the results. Naka-
mura and co-workers derived a sensor response
model from autoregressive model104 coefficients.35

Data were taken for five organic solvents using an
array of six AT-cut quartz crystals coated with a
plasma polymer film. A principal component analysis
was done using the normalized saturation-mass both
by itself and with the time constant. KNN was used
to quantify the improvement in the separation of
analyte classes when both parameters were included.
This paper provides an example of using PCA to
make two-dimensional plots of the data and then
using KNN to quantify the analyte separation by the
PCs. It appears that the authors considered only the
first two PCs in their analysis. While it is convenient
to use only the first two or three PCs for graphical
display, KNN can accommodate any number of PCs.
There is a possibility that the authors may have had
better classification rates using more PCs or different
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PCs. As was the case with the previous paper, this
paper provided few of the details of the computations.

4. Visually−Empirical Region of Influence

A unique new clustering method has been devel-
oped by Osbourn et al. at Sandia National Labora-
tories. The development of visually-empirical region
of influence (VERI) clustering was motivated by
shortcomings of other known clustering techniques.105

Human clustering judgments in two dimensions
extended to k-dimensional data are used as the
clustering criteria. No input is required from the user
beyond the data. Provision is made for both outlier
and multiclass data points.

VERI is based on the concept of a region of
influence (ROI). In two dimensions, a region is
defined around each pair of points such that each pair
is clustered only if no other data points lie within
the region of influence. The shape of the region has
been empirically determined from experiments with
human subjects, but the scale and orientation of the
ROI are adjusted for each pair of points. To extend
the method to k-dimensions, all combinations of three
points are considered. Only if two points lie within
the ROI and one does not do the two points form a
cluster. Thus, a k-dimensional problem is reduced to
a series of two-dimensional problems.

The clustering can also be extended to a pattern
recognition method.106 The first step is to normalize
the values for each feature. Next, leave-one-out
processing of the data should be performed to identify
outliers and points in multiple classes. The class of
an unknown, or test point, is classified according to
which training points it clusters with, if any. Points
which do not fall within any defined class are
considered outliers.

VERI has been used to identify the best array of j
sensors chosen from a larger pool of k possible
sensors. The method has been used to choose the
optimal two-sensor pair from six possibilities for the
simultaneous determination of CO2 and H2O.107 Ricco
and co-workers used VERI to analyze all possible
combinations of six SAW sensors to form the optimal
arrays with between three and six sensors.108 The
data set consisted of the isotherms for 15 organic
analytes and water. The best three through six sensor
arrays had correct identification rates of 84%, 95.8%,
97.9%, and 98.3%, respectively. The authors noted
that the reason the best four- through six-sensor
arrays had less than 100% correct identification was
that a few points were classified as outliers. The
authors proposed that quantification could be done
by having a look-up table of the original data and
averaging concentrations for the analytes in the table
with data most similar to that of the unknown.

Further, one of the best six-sensor arrays identified
previously was used to analyze a data set comprised
of seven analytes and their 21 binary mixtures at
varying concentrations. A 98% correct identification
rate was achieved. Finally, the effects of reproduc-
ibility, noise, and drift upon VERI pattern recognition
were studied. It was found that the addition of noise
did not significantly degrade the pure component
results up to 28% noise, but 8% noise had a signifi-

cant effect upon mixtures, and 12% noise had very
significant effects.

J. Computational Neural Networks
Computational neural networks (NNs) are a popu-

lar technique for sensor array data processing. While
there are myriad NN methods in existence, only those
used with sensor array data will be described in
detail here. Hertz, Krogh, and Palmer included in
their book a brief history of NNs and provide refer-
ences to important papers.109

1. Feed-Forward Neural Networks

The feed-forward (FF) NN is the most often used
NN technique for the analysis of data from sensor
arrays.4 These networks are also known as multilayer
perceptrons and back-propagation NNs (after the
most popular method of optimizing the network’s
weights and biases). These networks are used both
as classifiers and as quantitators.

The FF network consists typically of an input layer,
a hidden layer, and an output layer, as shown in
Figure 3. For sensor arrays, the number of neurons
in the input layer is frequently equal to the number
of sensors in the array, or the optimal number of
sensors in the array, times the number of pieces of
information taken from each sensor, which is fre-
quently but not always one. The data fed to the input
layer are also frequently scaled.

Each input is passed along to the hidden layer
along with a weight. In the hidden layer, a weighted
sum of the inputs is computed and a bias term is
added, which is equivalent to having an additional
input with the fixed value of one. This value is then
subjected to a transfer function, which is typically a
sigmoid (as illustrated in Figure 3) or hyperbolic
tangent function. The optimal number of neurons to
include in the hidden layer must be experimentally
determined.

Figure 3. Diagram of a fully connected three-layer feed-
forward computational neural network. The notation in the
neuron which is shown in detail is as follows: Outj,3 is the
output of the neuron which will be passed on to the neurons
in the output layer. Netj,3 is the weighted sum of the inputs
which is subjected to the sigmoid transfer function which
results in Outj,3. The weights between the neurons are
denoted as wj,n

i,m. Finally, Θj,3 is the bias term.
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The output from the hidden layer is then passed
to the output layer. The number of neurons in the
output layer usually depends on the application. If
the network is being used as a classifier, the number
of neurons is typically equal to the number of classes.
The same operations are performed in the output
neurons as in the hidden layer neurons. The result
is then scaled (the reverse of the scaling process at
the beginning of the network) and the user gets an
answer.

Training FF networks amounts to adjusting the
weights and biases. Various algorithms have been
developed for this purpose. Arguably the most popu-
lar is the back-propagation method.110 The use of the
back-propagation technique requires the optimization
of a learning rate and a momentum term. Other
training algorithms include quasi-Newton methods109

such as Broyden-Fletcher-Goldfarb-Shanno
(BFGS).111-114 Such methods offer the advantages of
fewer parameters to adjust (no learning rate or
momentum), and they are second-order methods,
which means more information about the error
response surface is taken into account during their
training.

Regardless of the algorithm chosen, the training
process is an iterative procedure. Observations are
presented to the network one by one, and the weights
and biases are adjusted after each observation in a
direction which minimizes the difference between the
true value and the value predicted by the network
(or the classification, if the network is being used as
a classifier). Some training methods involve adjusting
the weights and biases after each pass through the
entire training set, i.e., after each epoch. This process
continues until training is complete. The method for
determining when training is complete is dependent
on the optimization algorithm chosen to adjust the
weights and biases. Typically an external test set is
then used to determine the utility of the network for
predicting observations which were not used in
training the network.

The performance of the NN after training is de-
pendent upon the starting weights and biases. One
set of randomly chosen weights may yield a network
with a low error rate, and another set may produce
a network which gives inferior results. One way to
overcome the starting-point dependence is to train
many networks from different random starting points
and select one which gives the best performance.
Another option is to use an optimization algorithm
to choose a reasonable set of starting weights and
biases.

Another factor to consider when using FF NNs is
overtraining. This occurs when the network memo-
rizes the features of the training data and loses its
ability to generalize. One method used to avoid
overtraining is the use of a cross-validation (CV) set
to monitor the training of the network. After every
epoch, the CV set is predicted and training is stopped
at the point in training at which the CV set error
begins to increase.

Several papers have been written which give
guidelines for the proper use of FF NNs to avoid
getting results based on chance rather than a true

relationship in the data.115-117 One disadvantage of
using a FF NN for classification purposes is that the
number of adjustable parameters quickly increases
as the number of sensors or classes increases. The
ratio of the number of training observations to the
number of adjustable parameters in a NN should be
kept above 2.117 The number of adjustable param-
eters, P, is given by

where I is the number of units in the input layer, H
is the number of neurons in the hidden layer, and O
is the number of units in the output layer. For
instance, a modest 3-2-3 network has 17 adjustable
parameters, necessitating at least 34 training obser-
vations, while a modest increase in the number of
sensors to 5 and the number of classes to 6, assuming
4 hidden units, results in 54 adjustable parameters,
which means at least 108 observations should be in
the training set. It is not uncommon to see papers
with at least six sensors and eight classes, and if we
again assume four hidden neurons (although the
actual optimum number in a particular application
will vary and must be determined by the user), we
get 68 adjustable parameters. Changing to five
hidden neurons means an increase to 83 adjustable
parameters. Anyone not wishing to take large num-
bers of training set data observations will probably
not wish to use FF NNs for classification.

In addition to the number of training observations
required, additional samples should be taken for a
cross-validation set. As discussed above, this is used
to prevent overtraining the network to the point
where it has memorized the training data, which
results in overfitting so that the network has no
predictive ability. The training process is monitored
by predicting the output of the network after each
epoch for the cross-validation set. The cross-valida-
tion set error will decrease during the course of
training the network, until it reaches the point where
the network begins to overtrain. At that point, the
cross-validation set error will begin to increase, and
it is right before that error begins to increase that
the training should be terminated.

Following the training of the NN, some form of
validation is desirable to show that the model arises
from a true relationship between the data and the
dependent variable, rather than by chance. A set of
observations not used for either training or cross-
validation should be held out of the data set and used
for this purpose. The model created is then used to
predict the dependent variable for the members of
the prediction set. If the prediction set error is close
to the training and cross-validation set error, the
model has validated. If the prediction set error is very
large, while the training set error was very good, it
is likely that the network has been overtrained and
has simply memorized the training set data. Another
possibility in that case is that too many adjustable
parameters have been used and, again, the training
set has simply been memorized and the network has
no predictive ability.

One additional method of validating the model is
by Monte Carlo experiments. The dependent variable

P ) (I × H) + (H × O) + H + O (22)
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is scrambled, and then the network is trained using
this dependent variable and the descriptors used in
the original model. If this results in a poor prediction
set error, this provides further evidence that the
model is valid and did not arise by chance correla-
tions.

In order for the reader to be able to evaluate the
computational work done in a paper, the authors
should include relevant computational details. This
includes the number of layers, the number of neurons
in each layer, the number of training observations,
whether a cross-validation set was used and if so how
many members it contained, and whether a predic-
tion set was used and the number of members in it.
If some other form of validation was used, that should
be included. For a treatment of FF NNs beyond that
presented here, the reader is referred to a review by
Burns and co-workers.116 The review gives an expla-
nation and many examples of applications of the
method and, most importantly, further addresses the
pitfalls researchers face in using FF networks.

2. Applications of Feed-Forward Neural Networks

Many authors described the application of FF NNs
to the analysis of data from sensor arrays. A sum-
mary of these applications appears in Table 2. In the
table, the type of sensor, the analytes, and a descrip-
tion of the data from the array which is used as input
to the NNs is given. Also given is whether the
application was for classification or quantitation, the
architecture used, and the results reported.

Commercially available instruments were used in
a wide variety of applications with FF computational
NNs chosen for data analysis. A commercial array
of 32 conducting polymer sensors was used to inves-
tigate the utility of electronic noses for arson inves-
tigation in the detection of accelerants.118 The in-
strument was used to analyze neat samples of
common accelerants and of strong and weak residues
from fire debris with the objective of classifying
samples according to type of accelerant and strength
(neat, weak, or strong). The network was trained
using a fuzzy back-propagation algorithm supplied
by the instrument manufacturer. It was found that
while initial results were promising, effects resulting
from the substrate to which the sample was applied
and the treatment during and after the fire should
be investigated. While the application is interesting,
few of the relevant computational details were sup-
plied.

In another interesting application, He and co-
workers used FF networks and sensor array data to
correctly classify the smoke from four combustible
materials: wood, plastic, grain, and paper.44 They
found that they were able to use the network to
obtain a correct classification rate of 100% with the
NN approach, which out-performed stepwise dis-
criminant analysis, with 98% correct for the training
set and 83% correct for the test set. These results
must be interpreted with caution, however, as even
though validation was done for the NN, the ratio of
training observations to adjustable parameters is low.

Monitoring beer flavor is another sensor array
application in which FFNNs have been applied.

Gardner and co-workers used a network with an 18:
6:3 architecture to classify samples of carrier gas,
ethanol, and ethanol tainted with diacetyl. Five
samples of each analyte (at the same concentration
each time) were presented to the array, leading to a
data set of 15 observations. Caution must be used in
interpreting the author’s report of a 93% successful
classification rate for several reasons. First, the
network was trained for 100 000 iterations without
cross-validation to determine the optimal stopping
point. Second, although what the authors termed
3-fold cross-validation was done, the number of
adjustable parameters in the network is very large
(135) compared to the total number of observations
(15). Finally, it is possible that the good results for
the 3-fold cross-validation are due to the fact that
each of the five samples for each class was identical.
Due to the small number of training observations, a
different method (such as PCA and/or KNN, for
example) would have been more appropriate. Also,
it would likely be beneficial, whatever the analysis
method, to reduce the number of sensors used from
18 to the minimum number needed to give good
classification.

In Sweden, grain is checked by inspectors who try
to detect ‘off’ odors. Borjesson and co-workers com-
pared the performance of an array of MOSFET
sensors with NN processing to that of two or three
inspectors.119 Four SnO2 sensors, 10 MOSFET sen-
sors, and an infrared CO2 detector made up the array.
Grains were classified in one of two ways, either as
good or bad or as belonging to one of the following
four classes: moldy/musty, acid/sour, burnt, or nor-
mal. In addition, the mean intensity of samples
classified as having a moldy/musty odor was pre-
dicted. The array successfully classified 75% of the
samples in the four-class case and 90% of the samples
in the good/bad two-class case. Inspectors agreed in
the four-class case for 70% of the samples and in the
two-class case for 80% of the samples. The correlation
coefficient between the values of moldy/musty mean
intensity perceived by inspectors and that predicted
by the electronic nose was 0.89. The authors con-
cluded that the electronic nose and human inspectors
are about equally efficient in classifying grains ac-
cording to whether they possess an ‘off’ smell.

In the above example, the ratio of adjustable
parameters in the NNs to the number of training set
observations was above two, as recommended to
avoid chance correlations. As a further measure to
ensure the models found were valid, a test set was
used following the training. The networks were
trained to a specified mean square error or to a
maximum of 10 000 iterations. It is possible that
training using a cross-validation set, instead, to
monitor the performance of the network may have
resulted in less training iterations required and in
better over all prediction results. The use of cross-
validation to monitor network training is nicely
illustrated in a paper by Dickert et al.92 They used a
QCM array to simultaneously classify and quantify
volatile organic compounds, including xylene isomers.
This paper also is a good example of a model with a
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Table 2. Feed-Forward Computational Neural Network Applications in Sensor Array Data Analysis

sensors analytes

data
(no. of samples
in training set)c usagea

architecture
(no. of adj.
params)d

resultsb

(validation?)e ref

commercial instrument,
32 conducting
polymer sensors

neat and burned samples
containing arson
accelerants (gasoline,
kersosene, mineral
spirits, motor oil, diesel
fuel, lacquer thinner)

average sensor
response in
specified time
interval (?)

C ?:?:? initial results
promising (y)

118

three organic thin film
sensors

water, 2-propanol, ethyl
acetate, acetone

four measurements
of change in
conductivity taken
at specific times for
three sensors (?)

C 12:?:4 water and propanol
successfully
classified (y)

152

4 SnO2, 7 MOSFET,
infrared CO2 detector

grains (wheat, barley,
and oats)

voltage shift (200
or 257)

C,Q 12:6:4:M M ) 2
(116) or 4 (126)

75% 4 class,
90% 2 class (y)

119

four stationary phase
coated AT-cut quartz
crystals

acetone, benzene,
chloroform, pentane
and mixtures

lowest frequency
from each sensor
(?)

C 4:3:4 (31) all analytes and
mixtures
successfully
identified (n)

153

five semiconducting
oxide sensors

CO, methane,
propane/butane,
methanol

voltage shift (50) Q 64 neurons in
the SOM,
64:6:4 (418)

mean absolute error
(MAE) from hybrid
network 12.5; MAE
for feed-forward
network alone
14.3 (y)

128

six piezoelectric
quartz crystals

binary mixtures:
n-octane/chloroform,
n-octane/n-propanol,
chloroform/n-propanol

frequency change
(46)

C 6:4:3 (43)
combined with
8 × 8 SOM

>80% classification (n) 129

four metal oxide
semiconductor sensors

two red wines from
different vineyards

voltage shift (12) C 4:5:2 (37) better than standard
chemical analysis (y)

154

four coated quartz
microbalances

mixtures of m- and
p-xylene, o- and
m-xylene, tetrachloro-
ethylene and toluene,
in the presence
of humidity

frequency shift
(150)

C,Q 4:3:3 (27) better than 3 ppm
accuracy for
organics (y)

92

Pt-MOSFET sensor hydrogen and ethanol
mixtures at varying
concentrations

49 descriptors from
transient response
curve (?)

Q ?:?:? forward selection gives
the best results (y)

122

10 MOSFETs, six TGS,
one CO2 sensor

data from E. coli batch
cultivation to estimate
biomass and specific
growth rate

five descriptors per
sensor (?)

Q ?:?:? PCA and PLS scores
as inputs to the
neural network
give the best
results (y)

24 conducting polymer
sensors

carrier gas, ethanol,
diacetyl taint

fractional change in
conductance (12)

C 18:6:3 (135) 93% success (y) 155

four thin film oxide
semiconductor sensors

CH3SH, (CH3)3N,
C2H5OH, CO

fractional change
in resistance (60)

C 4:8:12 (148) 100% correct (n) 156

two semiconducting MOS,
1 humidity sensor

CO, CH4, humid air output voltage
(231)

C,Q 3:22:22:3 (663) 5% relative error (y) 127

10 CHEMFETs four
TGS, one infrared
CO2 sensor

five cardboard
packaging papers

drain current, and
resistances (80)

C 4:7:5 (75) or
7:7:7:5 (152)

100% correct
classification (y)

74

seven coated AT-cut
piezoelectric quartz
crystals

smoke of four
combustible
materials
(wood, plastic,
grain, paper)

frequency change
(52)

C 7:6:4 (76) 100% correct
classification, NN
performed better
than discriminant
analysis (y)

44

10 MOSFETs, four
semiconducting
SnO2, one optical
CO2 sensor

ethanol batch
cultivation
headspace
samples

change in voltage,
change in
resistance, IR
absorption (99)

Q 5:4:1 (29) 4.6% rms error for
ethanol
predictions (y)

69

eight commercial metal
oxide sensors

six types of
aviation fuel

change in
resistance (87)

C 5:7:5 (82) 9/9 and 4/4 correct
prediction for one
pset, 7/9 and 2/4
for a different split
of the data to make
a pset (y)

157

5:5:2 (42)
19 polymer-coated fiber

optics with an
immobilized dye

nine organic vapors change in dye
fluorescence
over time (210)

C, Q nine individual
networks
ranging from
7:4:1 (37) to
11:8:1 (105) for
classification,
one 9-3-1 (34)
network for
quantification

90% correct prediction
set classification,
97% correct
prediction set
quantification (y)

30

12 commercially
available TGS

coffee samples fractional change
in steady-state
sensor conductance

C 12:3:3 (51) 86% back-propagation,
93% fuzzy weights

158
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large ratio of observations to adjustable parameters
and the use of a prediction set for validation.

Llobet et al. investigated the use of transient
information from a sensor as well as steady-state
responses. Although leave-one-out validation was
done, the results must be interpreted cautiously due
to the small ratio of observations to adjustable

parameters. Nonetheless, this paper is an example
of the value of the use of dynamic data as well as
steady-state data in FFNN analyses.82 The use of
dynamic data has also been investigated in an
application involving the classification of three types
of tea120 and for the classification of bacteria and
yeast headspace.70

Table 2 (Continued)

sensors analytes

data
(no. of samples
in training set)c usagea

architecture
(no. of

adj. params)d
resultsb

(validation?)e ref

four commercially
available TGS

89 total patterns
(80 or 81)

81/51)1.6 75% BP, 85% FNN

water samples 4:6:6 (72) n-fold cross-validation (y)
60 total patterns (54) 72/54 ) 1.3

10 reflectometric
interference
spectroscopy sensors

tetrachloroethene,
toluene, octane

change in optical
thickness (198)

Q one net per
analyte, 3:3:1,
3:2:1, and 5:2:1,
respectively (not
fully connected)

RE < 5% (y) 90

21 conducting polymer
sensors

flavor notes in beer:
control, dimethyl
sulfide, diacetyl,
hop essence

resistance (?) C,Q 21:3:4 (82) flavor classification
unsuccessful for two
analytes and 54% and
87% for two others (y)

45

21:2:4 (56) organoleptic score
predicted with
accuracy of ( 1.4
(out of 10) with
95% confidence (y)

10 MOSFET sensors
and four TGS

fermented sausage
samples

gate voltage at
constant drain
current and voltage
drop (?)

Q 13:2:1 (31) rmse of 2.7 when
predicting
fermentation time (?)

66

commercially available
array of 32 conducting
polymer sensors

multiple classes of: percent change in
resistance over
time

C NN/GANN: NN/GANN % correct: 124

fragrances (172) 4:7:5/9:7:5
(75/110)

87/95 (y)

colas (420) 4:6:2/2:6:2
(44/32)

100/100 (y)

hog farm odors (85) 24:8:6/12:8:6
(254/158)

85/90 (y)

eight polymer-coated
SAW

two analytes: diethyl
sulfide, isooctane
(previously
published data)

frequency shift
ratio (?)

C varied no. of
input units from
4 to 8:5:2 (37 to
57 adj. param.)
or both
back-propagation
trained NN and
NN trained with
a genetic
algorithm (GA)

100% correct
classification for
4 or 5 inputs, 50%
for 6-8 inputs for
back-propagation
trained network

125

100% classification for
4-8 input neurons for
GA trained NN (y)

eight TGS three loose-leaf teas fractional voltage
distance (48)

C 208:80:3 (16963) 90% correct test set
classification (y)

120

16 conducting polymer
sensors

bacterial and yeast
culture headspace

parameters
calculated from
dynamic sensor
response (bacteria
) 112, yeast ) 128)

C 112:90:13
(11363)

bacteria 93.4%
correctly classified (n)

70

112:90:4 (10534) yeast 96.9% correctly
classified (n)

four commercially
available TGS

ethanol, toluene,
o-xylene at
three different
concentrations

steady-state
conductance change
and conductance
rise time (35)

C,Q 8:5:3 (63) 100% classification (y) 82

4:3:3 (27) 84% toluene, 100%
o-xylene and toluene
quantification (y)

eight reflectometric
interference
spectroscopy sensors

cyclohexane, toluene,
and nitrobenzene,
and binary
mixtures thereof

relative change in
optical film
thickness (108)

C,Q 6:3:3 (33) 107/108 correctly
classified (y)

58

a C ) classification, Q ) quantification. b Quantitative results are given if reported by the authors; otherwise the qualitative
results reported by the authors (e.g., successful classification) are given. c Number of observations used for training (if given).
d Number of adjustable parameters in the neural network, see text for details. e Indicates whether any type of cross-validation or
prediction was reported.
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A FFNN model was developed to classify varying
concentrations of CH3SH, (CH3)3N, C2H5OH, and CO.
The authors report 100% successful classification;
however, caution must be used in interpreting those
results as the size of the training set was never
specified, the use of a prediction set was not men-
tioned, and the network was trained for 10 000
iterations without a specified stopping criterion. In
addition, the network architecture used was 4:8:12,
which corresponds to 148 adjustable parameters.
This means that the training set should have at least
296 observations. While the number of samples used
for training is not explicitly given in the paper, it is
apparent from the text and a principal components
figure that the number is probably 60, which gives a
ratio of observations to adjustable parameters of 0.4,
far under the recommended minimum of 2.0.117

The selection of which features to use from a sensor
array is one aspect of data analysis. It is frequently
overlooked, and the steady-state responses from all
sensors are used as inputs to the FFNN. However,
most classification algorithms perform better when
only the features relevant to an application are
included.121 So, for instance, features which are solely
noise and features which do not contribute to the
separation of classes should be eliminated. The same
principle also applies to quantitative analyses.

Various means of feature selection are available,
including using forward selection or choosing an
optimal set of sensors to use. This problem becomes
more important to solve in applications where dy-
namic information is used and there are several
parameters available from each sensor. Also, choos-
ing only the features necessary will reduce the
number of adjustable parameters in a NN model and
thus reduce the chances of creating a model with poor
predictive ability.

Eklov and co-workers investigated methods of
finding the best inputs to a FF NN selected from a
large pool of available features.122 They discussed
several methods of feature selection. Two data sets
were investigated. Descriptors were calculated from
the raw data for both data sets, and two methods
were used to select inputs which were then used to
create NN models. The first method of feature selec-
tion involved choosing inputs by forward-selection
and evaluating subsets based on the root-mean-
square (rms) error of a multiple linear regression
model. The second method involved the calculation
of PCA and PLS scores to be used as inputs to the
NN. The best models for a data set of hydrogen and
ethanol mixtures resulted from using PCA and PLS
scores as inputs to a NN. A more noisy set of data
from an E. coli batch cultivation was modeled best
using inputs to a NN chosen by forward selection.
This is a good demonstration of the fact that there
are many possible ways to approach problems in
sensor array data processing and the best method to
use may depend on the application. Further, the best
method may not be known apriori, and various
experiments may be tried to find the right method
for a particular application.

Another method of choosing features to use in a
NN model is to use an optimization algorithm such

as the genetic algorithm or simulated annealing. An
array of 19 fiber optic sensors, each coated with a
polymer containing the immobilized dye Nile red, was
used to classify nine organic vapors.30 The change in
fluorescence intensity of the dye over 60 time points
(about 20 s) due to the presentation of the organic
vapors was monitored. The data for the 19 sensors
were examined, and those sensors producing noisy
or inconsistent data were eliminated from further
analysis. The data were then autoscaled to remove
concentration effects. For each of the remaining 10
sensors, 15 descriptors were calculated. These de-
scriptors included the average sensor response over
six evenly distributed sets of time points and the
most positive and most negative slopes. For each of
the nine analytes, a separate NN was constructed.
Feature selection was performed using simulated
annealing123 to choose the optimal subset of descrip-
tors with multiple linear regression as the fitness
evaluator. The selected features were then submitted
to NNs, which were trained using a BFGS optimiza-
tion method to adjust the weights and biases. The
system of NNs correctly classified 100% of the train-
ing set data and 90% of the prediction set data. The
interesting feature of this work is the calculation of
descriptors from the response curves and the use of
a simulated annealing optimization algorithm to
choose optimal subsets of descriptors.

Kermani et al. investigated the use of a genetic
algorithm (GA) combined with NN to select relevant
features and NN parameters.124 They compared the
results obtained using the GANN with NN results.
They found that while NNs gave satisfactory results,
combining them with the GA enhanced their perfor-
mance.

The use of genetic algorithms has not been confined
to feature selection. Srivastava et al. used a GA for
the purpose of training a neural network.125 The
purpose of the GA is to optimize the weights. Al-
though they demonstrated its use on a relatively
simple two-class problem, the results were very good.

In addition to classification, FF networks have been
used for quantification. An ethanol batch cultivation
was monitored using an electronic nose.69 Headspace
samples from the cultivation were analyzed to de-
termine the ethanol concentration present in the
broth. The best five sensors were determined using
PCA. A 5:4:1 FF NN correctly quantified the ethanol
concentrations with a root-mean-square error of 4.6%.

In many manufacturing industries, detecting the
concentrations of gases such as CO, CH4, and H2 is
important. Moore and co-workers used an array of
six sensors to collect data on the four gases.126 They
used a three-layer network with nine units in the
hidden layer but it was only partially connected.

The quantification of carbon dioxide and methane
in humid air has been attempted.127 One-half the
data set was used for training, and the entire data
set was used for testing. The results for the testing
phase may be overly optimistic due to the presence
of data used in training the network. To get a more
realistic validation, only the half of the data unused
in the training phase should be used for testing.
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Quantitative analysis with FFNNs includes not
only the prediction of analyte concentrations, but also
other properties of interest. Organoleptic scores have
been predicted for beer samples.45 The fermentation
time of sausage samples has been predicted.66

Kraus and Gauglitz58 compared the performance
of FFNNs and self-organizing maps (SOM) (discussed
in a later section) in simultaneously classifying and
quantifying three volatile organic hydrocarbons and
their binary mixtures using data from eight reflec-
tometric interference spectroscopy sensors. They
found that both NNs performed well, with the FFNN
correctly classifying 107/108 prediction observations
and the SOM correctly classifying 106/108 prediction
samples. This paper is notable because rather than
making replicate measurements of each analyte at
each concentration, each measurement of an analyte
was at a different concentration (or ratio of concen-
trations, in the case of the binary mixtures). Also,
the prediction measurements were made in the same
fashion, using concentration values not used for the
training data. This is more likely to give a realistic
estimate of network performance in a real-world
situation than the use of replicate measurements at
certain concentrations. Also, the practice of using
replicate measurements has raised objections from
reviewers.

Self-organizing maps (SOM) have been used as
preprocessing units to FF NNs both for quantification
and classification. Data from four pollutant gases
taken with five semiconductor oxide sensors were
used as input to a 64 neuron SOM.128 The outputs
from the SOM were then used as inputs to a FF NN.
The hybrid NN yielded a lower overall mean absolute
error of quantification than did a FF network alone.
A hybrid network of this type has also been used to
identify binary mixtures of organic solvents.129

3. Self-Organizing Maps

Self-organizing maps (SOM),130 also known as
Kohonen networks, are unsupervised pattern recog-
nition NNs. Training begins with one observation,
which is a vector of dimension N, which corresponds
usually to the number of sensors in the array. Each
element of the vector, xi, represents an input to the
network. The output units are arranged in an array
and connected by weights, wij, to the inputs. The
input observation is compared to each output vector’s
weight vector, and the output vector with the weight
nearest the observation is determined to be the
winner.

The weights are updated by a learning rule

for all i observations and j elements. η is the learning
rate. i* is the winning output unit. Λ(i,i*) is the
neighborhood function which is 1 for i ) i* and
decreases as the observation becomes further from
the outputs. Both η and Λ(i,i*) are user-specified
parameters which are typically adjusted as training
proceeds. Those units close to the winner have their
weights changed significantly, while those further
away undergo an increasingly insignificant change.

In this way, the weight vectors of the winning neuron
and its neighbors are made more similar to the input
vector. As is the case with supervised pattern recog-
nition methods, validation of the results should be
done by comparing the results obtained with the
network for the training set with the results from a
test set not used in training the network.

The most common application of the SOM has been
for the correction of drift. Marco and co-workers131

let the SOM continue to learn throughout the opera-
tion of the sensor array. The learning rate was kept
to a minimum and only the winning neuron was
allowed to update its weights. They found that with
simulated sensor array drifts of up to 20%, the SOM's
success rate remained above 80%; however, if during
the drift the SOM was allowed to continue learning,
the network experienced almost no loss of perfor-
mance. SOMs were also used to classify analytes
using sensor array data. The classification of com-
bustion gases using data from six commercial tin-
oxide sensors was accomplished with less than a 3%
error rate. A final supervised step was performed
after the SOM was trained to make classification
possible. The training patterns were presented again
to the network and the winning neurons were labeled
according to the class of the corresponding observa-
tion. A procedure was implemented for the case
where a conflict between observations arose. While
the authors did state that they divided the data set
into a training and a test set, the total number of
observations and the number of observations used for
prediction in each experiment were not clearly stated.
Another simulation of sensor array data with drift
also found the SOM effective in compensating for the
effects of the drift.132 Sensor array data with simu-
lated drift was used to empirically determine the
optimal SOM parameters for operating under such
conditions.133

A self-organizing classifier (SOC), similar to a SOM
except with only one neuron representing each class
and no neuron interconnections, was investigated for
its utility in counteracting the effects of drift and was
compared with the use of a Box-Jenkins model of
the sensors.134 The authors found that under condi-
tions where noise is limited and all gases are mea-
sured frequently, the SOC was capable of predicting
with 100% accuracy.

Finally, the performances of a sensory panel and
an electronic nose for the analysis of milk and tomato
pastes have been compared.67

4. Learning Vector Quantization
Learning vector quantization (LVQ) is a version of

a supervised SOM proposed by Kohonen.130 The
algorithm begins with the creation of starting weight
vectors for each class, the number of which is speci-
fied by the user. The weight vectors can be initialized
as the centroids of the data plus a small random
deviation (to prevent them all from being equal).
Next, an observation is presented to the network and
a weighted Euclidean distance is calculated between
the observation and each starting weight vector. The
weight vector nearest the observation is called the
winning neuron. The weight vector second nearest
to the observation is termed the runner-up neuron.

∆wij ) ηΛ(i, i*)(xj - wij) (23)
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If the winning neuron and the observation belong
to the same class, only that neuron is updated. If the
winning neuron is not of the same class as the
observation and the runner-up is, then both neurons
are updated. The updates are performed according
to the learning function

where wij
new is the jth element of the weight vector

for the ith neuron after learning, wij
old is the jth

element of the weight vector for the ith neuron before
learning, R(t) is a monotonically decreasing learning
rate, and xj is the jth descriptor value of the presented
observation. δ is equal to +1 if the winning neuron
is of the same class as the observation and -1 if it is
not. For the runner-up neuron, δ is zero unless it is
of the same class as the observation in which case δ
is +1. The updates result in making the neuron more
similar to the observation if the output is correct and
to the neuron being made less similar if it is incorrect.
Neurons which are rarely or never selected in the
training process are re-initialized during the training
process to the centroid of the poorly identified class
plus a small random deviation.

After all of the training data has been presented
once to the network, the current performance is
evaluated using a cost function.32 This is typically the
percentage of observations correctly classified or some
variation thereof. If the cost for this iteration is an
improvement of the previous cost, it is accepted. If it
is detrimental, it can be accepted based on a certain
probability. Training continues until the specified
number of epochs (complete presentations of the
training data) have elapsed. Like FF computational
NNs, LVQ is capable of overtraining; one way to
prevent overtraining is by using a cross-validation
set. During the prediction phase, the unknown vector
is compared to the weight vectors and the one most
similar to the unknown vector is the winner and
determines the class of the unknown.

Also as with FF computational NNs, validation is
necessary to determine that the model was not
obtained purely by chance. A prediction set should
be used as described for FF NNs.

The performance of LVQ has been compared with
that of other NNs. In both cases described below, the
LVQ technique was found to out perform FF NNs.

A polymer-coated fiber optic sensor array was used
to collect data for 20 organic vapors.31 The data were
autoscaled to remove concentration effects, and de-
scriptors were calculated. Classification was per-
formed using both individual FF networks for each
analyte and LVQ. Feature selection for the LVQ
models was performed using a genetic algorithm135,136

with LVQ as the fitness evaluator. Cross-validation
was used to monitor the training of the network and
to determine a termination point before the occur-
rence of over-training. The superior performance of
LVQ was confirmed by correctly classifying 90% of
the observations in an external prediction set, while
the individual FF networks collectively classified only
73% of the prediction set observations correctly. The
performances of LVQ, FF networks, and fuzzy adap-

tive resonance theory map (ARTmap) were compared
in the task of determining the ripeness of bananas
using commercial tin-oxide sensor array data.137

LVQ correctly classified 92% of banana samples into
classes consisting of seven stages of ripeness, while
fuzzy ARTmap and FF networks were found to have
correct classification rates of 90% and 83%, respec-
tively. Fuzzy ARTmap alone, however, was shown to
efficiently learn new samples without degrading its
performance on previous samples. In addition, thor-
ough studies were done comparing the generalizabil-
ity, ability to incrementally learn, and resistance to
noise of each of the types of networks.

5. Adaptive Resonance Theory-Based Methods

Compared to the NN methods described up to this
point, adaptive resonance theory-based methods offer
significant advantages. In contrast to the FF NNs,
ART networks require less training data, because the
number of adjustable parameters does not grow as
rapidly. ART networks train significantly faster than
LVQ networks. While the training time difference is
acceptable when one wishes to train using only a few
sets of features, if a more extensive feature selection
requiring many trainings to compare sets of features
is desired, the computational time is significantly
higher for LVQ than for ART networks.

Adaptive resonance theory (ART) was developed by
Grossberg to address what he termed the stability-
plasticity dilemma. Briefly, other algorithms such as
LVQ will adjust their weight vectors when presented
with outlier data to accommodate the new data point,
which may result in the degradation of the ability of
the network to identify existing classes. In analogy
to LVQ, ART networks compare the new observation
to the winning neuron, and if it is not similar enough,
the network architecture is able to adapt.32 Many
variants exist, including ART1, ART2,99 fuzzy ART,
ARTmap, and fuzzy ARTmap.138 Just as the other
NN methods, these NNs also require cross-validation
and prediction to prevent overtraining (in supervised
methods) and for model validation, respectively.

Data from a fiber optic sensor array was used with
a fuzzy ARTmap NN to identify TCE from among
other analytes and to identify the presence or absence
of TCE in binary mixtures.32 The data were auto-
scaled to remove concentration effects, and descrip-
tors to encode features of the response traces were
calculated. Feature selection for the ARTmap models
was performed using a genetic algorithm with a fuzzy
ARTmap as the fitness evaluator. A cross-validation
set was used to prevent overtraining. The final model
consisted of 12 descriptors from four sensors. Valida-
tion of the model occurred when it successfully
classified 94% of the prediction set as to the presence
or absence of TCE.

Using previously published data, Shukla and co-
workers investigated the utility of an unsupervised
ART network for classifying sensor array data.139 The
change in resistance of four doped tin oxide sensors
was measured when the array was exposed to vary-
ing concentrations of test vapors. Acetone, ethyl
methyl ketone, carbon tetrachloride, and xylene were
the test vapors. The ratios of three of the sensor

wij
new ) wij

old + δR(t)[wij
old - xj] (24)
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outputs to the fourth sensor output were used as
input to the ART network. The results were 100%
correct classification for the ART network, which is
better than the 90% correct classification obtained
using FF NNs with the same data. While the authors
stated that an independent test set was used, it was
not clear whether results reported were for the
training set or the test set.

6. Other Neural Network Techniques

Various other NN techniques have been used as
well. Some novel techniques are described in papers
in this category. An array of 15 sensors, nine MOS-
FETs, four Taguchi-type sensors, one CO2 sensor, and
one O2 sensor, was used to analyze the headspace of
bacteria for the purpose of classifying them.140 Clas-
sification trees were used to analyze the data, which
was correctly classified by the sensor system in 76%
of the cases.

The responses of the sensors were monitored over
time. Features were extracted from the data by
fitting functions to approximate the shape of the true
response curves. The six features used from each
sensor came from the fitted approximations rather
than from the response curves themselves. Seven
sensors were eliminated from the analysis on the
basis of having signals which were not significantly
different from noise. Forty-eight features from the
remaining eight sensors were passed to classification
trees for further processing. Four features were
chosen by the classification tree and yielded a 68%
correct classification for a validation set not used in
making the model. Classification trees separate data
into classes by asking simple questions about the
data, which can be answered yes or no.

Nakamoto and co-workers presented a creative
strategy for identifying mixture components.141 The
sensor array is used to take an unknown mixture
sample. Next, the sensor array is exposed to a sample
consisting of a known ratio of the same components
appearing in the mixture. The ratio of the known
sample is adjusted until the same pattern observed
for the unknown is generated for the known sample.
The ratio of components in the unknown sample is
then determined to be equal to the ratio in the known
sample. They applied this technique to two- and
three-component mixtures. While this is novel, the
drawback is that it can obviously only be applied
when the components present in a mixture are
known in advance. Because the ratio of components
in the known sample must be iteratively adjusted,
waiting for steady-state responses would be time-
consuming. Therefore, the authors used a method
based upon adaptive control theory to make continu-
ous measurements as the ratio is adjusted.

White and co-workers used a delay line NN with a
fiber optic sensor array to investigate the functional
consequences of the neural processing of sensor data
to get an insight into the biological equivalent.142

They used it to test the analyte classification ability
of their computer model of the olfactory bulb of the
salamander.

ChemNets are NNs incorporating information from
sensor responses and information underlying the

theory of the sensors used.143 Approximately 95% of
the final network is based upon theory. The remain-
ing part of the network is a FF computational NN
and is thought by the authors to account for the
uncertainty encountered in real world situations.
ChemNets were constructed on the basis of Taguchi
sensor theory. The authors applied the ChemNets to
benzene/toluene mixtures.

Several authors used NN methods based on fuzzy
logic. Ali and co-workers144 used a QCM sensor array
and a neuro-fuzzy NN to classify six organic solvents.
A fuzzy NN was used by Vlachos and Avaritsiotis145

with an array of tin oxide sensors. The array suc-
cessfully classified CO, ethanol, and methane and
quantified CO in the presence of various humidity
levels. The performance was compared with that of
back-propagation NNs.

Pie and Jun describe a network consisting of a
radial basis function (RBF) NN combined with a
fuzzy c-means algorithm (FCMA).146 They use it both
on simulated data and on data from a sensor array.
The interesting part of this paper is the combined
network description. Classification results for a real
data set of four gases are reported; however, it is not
specified if the results are for a training or prediction
set. They describe the same system and very similar
experiments in another paper.147

Lazzerini and co-workers proposed what they
termed a ‘linguistic fuzzy method’ for the classifica-
tion of samples using data from a sensor array.148 The
use of an autoassociative neural network for prepro-
cessing data which is then used as input to a FFNN
has been described.149 The use of recurrent and time-
delay NNs has been investigated.150 The results of
analyzing a data set with the abductory induction
mechanism (AIM) have been compared with previ-
ously published FFNN results for the same previ-
ously published data set by Sommer et al.151

VII. Summary and Conclusions
The uses of cross-reactive arrays of chemical sen-

sors coupled with pattern recognition methods have
been described. Several types of sensors have been
developed including metal oxide semiconductors,
metal oxide semiconducting field effect transistors,
quartz crystal microbalances, surface acoustic wave
devices, polymer-coated sensors, and optical sensors.
Numerous applications have been demonstrated us-
ing these types of sensors in an array format.
Additionally, several commercial products have been
developed.

The analysis of the data from a sensor array
involves selecting a preprocessing approach (if neces-
sary) and a pattern recognition method. The optimal
preprocessing method depends on the type of sensors
used and the goal of the analysis. For example, a
common preprocessing technique used to remove
concentration effects from analyte responses is nor-
malization. This is useful when classification of
analytes is of interest but detrimental for quantita-
tive applications. Several available preprocessing
approaches have been presented and discussed, along
with representative examples employing these tech-
niques.
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If the steady-state responses from each sensor are
used as the inputs to whatever method is chosen,
little feature selection is usually required. However,
if the time-varying nature of the signals from the
sensors are taken into account, the dimensionality
of the data must be reduced using, for example, the
calculation of principal components or a preprocess-
ing method such as the calculation of descriptors.

Methods such as linear discriminant analysis,
principal component analysis, and partial least
squares are useful for reducing the dimensionality
of a data set so that it can be examined in a two- or
three-dimensional plot. For many of the applications
presented, the separation provided by these methods
was sufficient. Since LDA, PCA, and PLS are all
linear methods, they are best used in cases where
sensor arrays are known to respond linearly. These
methods can be used with nonlinear data; however,
care should be taken in interpreting results from such
an analysis. An advantage of these approaches is that
little calibration data is required for model genera-
tion.

Cluster analysis and computational neural net-
works offer alternatives to the linear techniques
mentioned above. These methods offer the potential
to accurately model any nonlinearity that may be
present. A potential disadvantage of NN approaches
is that no statistical information can be generated
to describe the models. Additionally, as the number
of adjustable parameters for a NN increases, so do
the number of training samples required and the
amount of training time required.

As a general rule, as the number of analytes in an
application increases, so does the complexity of the
algorithm used to analyze the data. A notable excep-
tion to this rule of thumb is the KNN classification
scheme, which has been shown to perform as well as
more complicated methods for various applications,
although for certain purposes it may be more desir-
able to use another technique. For example, the
computational time increases with the square of the
number of observations, for KNN, so for a very large
data set, a different classification scheme, such as a
fuzzy ARTmap, may be necessary due to time con-
siderations. This difficulty can be mitigated by, for
example, using a leave-n-out training scheme rather
than the customary leave-one-out. Also, because the
algorithm is so simple, it cannot take into account
observations from an unknown class.

As demonstrated in this review, numerous methods
exist for computational analysis of data obtained from
arrays of chemical sensors. With advances in array
fabrication (e.g., miniaturization of sensor allowing
more responses to be recorded in a shorter time),
demands on computational methods will be in-
creased. Additionally, computational aspects will play
a key role in allowing array based sensors to be used
in monitoring a wide range of chemically similar
analytes. Past success using cross-reactive arrays of
chemical sensors coupled to computational tech-
niques to identify and quantify analytes of interest
ensures that this area of research will continue to
receive substantial attention in the future.
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